Volume 19, Issue 9 (September 2019)                   Modares Mechanical Engineering 2019, 19(9): 2175-2182 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yousefi F, Taghiabadi R, Baghshahi S. Improving the Mechanical Properties of Mn-rich Al-4Ni-4Mn Alloy by Increasing the Solidification Rate and Friction Stir Processing. Modares Mechanical Engineering 2019; 19 (9) :2175-2182
URL: http://mme.modares.ac.ir/article-15-25770-en.html
1- Materials Department, Technical & Engineering Faculty, Imam Khomeini International University (IKIU), Qazvin, Iran
2- Materials Department, Technical & Engineering Faculty, Imam Khomeini International University (IKIU), Qazvin, Iran , taghiabadi@ikiu.ac.ir
Abstract:   (5498 Views)
Hypoeutectic Al-Ni alloys are extensively used in automotive and aerospace industries due to their excellent castability and appropriate high-temperature specific strength. The addition of Mn to the composition of these alloys promotes the formation of Mn-rich precipitates and improves their strength and hardness, especially at high temperatures. However, if the Mn content exceeds 2 wt. %, increasing the size and volume fraction of Mn-rich compounds adversely affects the mechanical properties, especially the ductility and toughness of the alloys. On this basis, the current study was aimed to control the negative impact of high Mn content on tensile properties of hypoeutectic Al-Ni alloys by increasing the solidification rate and friction stir processing. For this purpose, the Al-4Ni-4Mn samples, prepared under different solidification rates of 3.5 and 10.4 °C/s, were subjected to friction stir processing (12 mm/min, 1600 rpm). Microstructural characterization and image analysis results show the substantial refinement of Mn-rich particles and their distribution in the matrix, refinement of grains, and elimination of casting defects such as gas/shrinkage porosities and entrained oxide bifilms. According to the results, increasing the solidification rate and applying of friction stir processing improved the tensile strength, yield strength, fracture strain, toughness, and microhardness of alloy by 63, 55, 123, 188 and 58%, respectively.
Full-Text [PDF 1271 kb]   (2607 Downloads)    
Article Type: Original Research | Subject: Machining
Received: 2018/10/3 | Accepted: 2019/02/6 | Published: 2019/09/1

1. Karakulak E, Koç FG, Yamanoglu R, Zeren M. Mechanical properties of hypoeutectic Al-Ni alloys with Al3Ni intermetallics. Materials Testing. 2016;58(2):117-121. [Link] [DOI:10.3139/120.110825]
2. Yu W, Hao Q, Fan L, Li J. Eutectic solidification microstructure of an Al-4Ni-2Mn alloy. Journal of Alloys and Compounds. 2016;688(Pt B):798-803. [Link] [DOI:10.1016/j.jallcom.2016.07.259]
3. Huang K. Precipitation strengthening in Al-Ni-Mn alloys [Dissertation]. Worcester MA: Worcester Polytechnic Institute; 2015. [Link]
4. Fan Y, Huang K, Makhlouf MM. Precipitation strengthening in Al-Ni-Mn alloys. Metallurgical and Materials Transactions A. 2015;46(12):5830-5841. [Link] [DOI:10.1007/s11661-015-3119-6]
5. Belov NA, Alabin AN, Eskin DG. Improving the properties of cold-rolled Al-6%Ni sheets by alloying and heat treatment. Scripta Materialia. 2004;50(1):89-94. [Link] [DOI:10.1016/j.scriptamat.2003.09.033]
6. Nam SW, Lee DH. The effect of Mn on the mechanical behavior of Al alloys. Metals and Materials International. 2000;6:13. [Link] [DOI:10.1007/BF03026339]
7. Balanetskyy S, Meisterernst G, Grushko B, Feuerbacher M. The Al-rich region of the Al-Mn-Ni alloy system, part II, phase equilibria at 620-1000 °C. Journal of Alloys and Compounds. 2011;509(9):3795-3805. [Link] [DOI:10.1016/j.jallcom.2010.10.114]
8. Balanetskyy S, Meisterernst G, Feuerbacher M. The Al-rich region of the Al-Mn-Ni alloy system, part I: Ternary phases at 750-950 °C. Journal of Alloys and Compounds. 2011;509(9):3787-3794. https://doi.org/10.1016/j.jallcom.2010.10.185 [Link] [DOI:10.1016/j.jallcom.2010.10.114]
9. Grushko B, Pavlyuchkov D, Mi SB, Balanetskyy S. Ternary phases forming adjacent to Al3Mn Al4Mn in AlMnTM (TM = Fe, Co, Ni, Cu, Zn, Pd). Journal of Alloys and Compounds. 2016;677(C):148-162. [Link] [DOI:10.1016/j.jallcom.2016.03.220]
10. Martínez-Villalobos MA, Figueroa IA, Suarez MA, Lara Rodríguez GÁ, Novelo Peralta ON, González Reyes G, et al. Microstructural evolution of rapid solidified Al-Ni alloys. Journal of the Mexican Chemical Society. 2016;60(2):67-72. [Link] [DOI:10.29356/jmcs.v60i2.75]
11. Abbaschian R, Abbaschian L, Reed-Hill RE. Physical metallurgy principles. 4th Edition. Stamford CT: Cengage Learning; 2009. [Link]
12. Porter DA, Easterling KE, Sherif MY. Phase transformation in metals and alloys. 3rd Edition. Boca Raton: CRC Press; 2009. [Link]
13. Torabzadeh Kashi H, Faraji Gh. A review of the production of ultrafine grained and nanograined metals by applying severe plastic deformation. Modares Mechanical Engineering. 2016;16(6):271-282. [Persian] [Link]
14. Su JQ, Nelson TW, Sterling CJ. Grain refinement of aluminum alloys by friction stir processing. Philosophical Magazine. 2006;86(1):1-24. [Link] [DOI:10.1080/14786430500267745]
15. Ma ZY. Friction stir processing technology: A review. Metallurgical and Materials Transactions A. 2008;39(3):642-658. [Link] [DOI:10.1007/s11661-007-9459-0]
16. Mishra RS, Ma ZY. Friction stir welding and processing. Materials Science and Engineering R Reports. 2005;50(1-2):1-78. [Link] [DOI:10.1016/j.mser.2005.07.001]
17. Ma ZY, Sharma SR, Mishra RS, Mahoney MW. Microstructural modification of cast aluminum alloys via friction stir processing. Materials Science Forum. 2003;426-432:2891-2896. [Link] [DOI:10.4028/www.scientific.net/MSF.426-432.2891]
18. Ahmadifard S, Kazemi Sh, Heidarpour A. Fabrication of Al5083/TiO2 surface composite by friction stir process and investigating its microstructural, mechanical and wear properties. Modares Mechanical Engineering. 2016;15(12):55-62. [Persian] [Link]
19. Yousefi F, Taghiabadi R, S. Baghshahi S. An investigation on the effect of Mn on the castability of hypoeutectic Al-2Ni-xMn alloys. Founding Research Journal. 2017;1(2):69-78. [Persian] [Link]
20. Nie KB, Deng KK, Wang XJ, Xu FJ, Wu K, Zheng MY. Multidirectional forging of AZ91 magnesium alloy and its effects on microstructures and mechanical properties. Materials Science and Engineering A. 2015;624:157-168. [Link] [DOI:10.1016/j.msea.2014.11.076]
21. Flemings MC. Solidification processing. New York: McGraw-Hill; 1974. [Link] [DOI:10.1007/BF02643923]
22. Di Sabatino M, Arnberg L. A review on the fluidity of Al based alloys. Metallurgical Science and Technology. 2004;22(1):9-15. [Link]
23. Ludwig T, Di Sabatino M, Arnberg L, Dispinar D. Influence of oxide additions on the porosity development and mechanical properties of A356 aluminium alloy castings. International Journal of Metalcasting. 2012;6(2):41-50. [Link] [DOI:10.1007/BF03355526]
24. Mugica GW, Tovio DO, Cuyas JC, González AC. Effect of porosity on the tensile properties of low ductility aluminum alloys. Materials Research. 2004;7(2):221-229. [Link] [DOI:10.1590/S1516-14392004000200002]
25. Akaberi N, Taghiabadi R, Razaghian A. Effect of bifilm oxides on the dry sliding wear behavior of Fe-rich Al-Si alloys. Journal of Tribology. 2017;139(5):051602. [Link] [DOI:10.1115/1.4035340]
26. Campbell J. An overview of the effects of bifilms on the structure and properties of cast alloys. Metallurgical and Materials Transactions B. 2006;37(6):857-863. [Link] [DOI:10.1007/BF02735006]
27. Eisaabadi Bozchaloei Gh, Varahram N, Davami P, Kim SK. Effect of oxide bifilms on the mechanical properties of cast Al-7Si-0.3Mg alloy and the roll of runner height after filter on their formation. Materials Science and Engineering A. 2012;548:99-105. [Link] [DOI:10.1016/j.msea.2012.03.097]
28. Divandari M, Campbell J. Oxide film characteristics of Al-7Si-Mg alloy in dynamic conditions in casting. International Journal of Cast Metals Research. 2004;17(3):182-187. [Link] [DOI:10.1179/136404604225017546]
29. Dai X, Yang X, Campbell J, Wood J. Influence of oxide film defects generated in filling on mechanical strength of aluminium alloy castings. Materials Science and Technology. 2004;20(4):505-513. [Link] [DOI:10.1179/026708304225012387]
30. Wang QG. Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357. Metallurgical and Materials Transactions A. 2003;34(12):2887-2899. [Link] [DOI:10.1007/s11661-003-0189-7]
31. Ceschini L, Morri A, Toschi S, Johansson S, Seifeddine S. Microstructural and mechanical properties characterization of heat treated and overaged cast A354 alloy with various SDAS at room and elevated temperature. Materials Science and Engineering A. 2015;648:340-349. [Link] [DOI:10.1016/j.msea.2015.09.072]
32. Ghassemali E, Riestra M, Bogdanoff T, Kumar BS, Seifeddine S. Hall-Petch equation in a hypoeutectic Al-Si cast alloy: Grain size vs. secondary dendrite arm spacing. Procedia Engineering. 2017;207:19-24. [Link] [DOI:10.1016/j.proeng.2017.10.731]
33. Shabestari SG, Moemeni H. Effect of copper and solidification conditions on the microstructure and mechanical properties of Al-Si-Mg alloys. Journal of Materials Processing Technology. 2004;153-154:193-198. [Link] [DOI:10.1016/j.jmatprotec.2004.04.302]
34. Ceschini L, Morri A, Morri A, Gamberini A, Messieri S. Correlation between ultimate tensile strength and solidification microstructure for the sand cast A357 aluminium alloy. Materials & Design. 2009;30(10):4525-4531. [Link] [DOI:10.1016/j.matdes.2009.05.012]
35. Huang KT, Lui TS, Chen LH. Effect of dynamically recrystallized grain size on the tensile properties and vibration fracture resistance of friction stirred 5052 alloy. Materials Transactions. 2006;47(9):2405-2412. [Link] [DOI:10.2320/matertrans.47.2405]
36. Dieter GE. Mechanical metallurgy. 3rd Edition. New York: McGraw-Hill; 1986. [Link]
37. Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena. 2nd Edition. Oxford UK: Elsevier; 2004. [] [DOI:10.1016/B978-008044164-1/50016-5]
38. Sato YS, Park SHC, Kokawa H. Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys. Metallurgical and Materials Transactions A. 2001;32(12):3033-3042. [Link] [DOI:10.1007/s11661-001-0178-7]
39. Jata KV, Sankaran KK, Ruschau JJ. Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451. Metallurgical and Materials Transactions A. 2000;31(9):2181-2192. [Link] [DOI:10.1007/s11661-000-0136-9]
40. Huang KT, Lui TS, Chen LH. Pre-treated effect of friction stir processing of Al Alloy 5052 on vibration fracture behavior under resonant vibration. Materials Transactions. 2005;46(12):3051-3058. [Link] [DOI:10.2320/matertrans.46.3051]
41. Panigrahi SK, Jayaganthan R. Influence of solutes and second phase particles on work hardening behavior of Al 6063 alloy processed by cryorolling. Materials Science and Engineering A. 2011;528(7-8):3147-3160. [Link] [DOI:10.1016/j.msea.2011.01.010]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.