1. Shamekhi AH, Shamekhi AM. Modeling and simulation of combustion in SI engines via neural networks and investigation of calibration and data acquisition in the GT-Power software. Modares Mechanical Engineering. 2015;14(13):233-244. [Persian] [
Link]
2. Shamekhi AM, Shamekhi AH. A new approach in improvement of mean value models for spark ignition engines using neural networks. Expert Systems with Applications. 2015;42(12):5192-5218. [
Link] [
DOI:10.1016/j.eswa.2015.02.031]
3. Guzzella L, Onder Ch. Introduction to modeling and control of internal combustion engine systems. 2nd Edition. Berlin: Springer; 2010. [
Link] [
DOI:10.1007/978-3-642-10775-7]
4. Moskwa JJ, Hedrick JK. Modeling and validation of automotive engines for control algorithm development. Journal of Dynamic Systems Measurement and Control. 1992;114(2):278-285. [
Link] [
DOI:10.1115/1.2896525]
5. Shamekhi AH, Ghaffari A. An improved model for SI engines. ASME 2004 Internal Combustion Engine Division Fall Technical Conference, 24-27 October, 2004, Long Beach, California, USA. New York: American Society of Mechanical Engineers; 2004. [
Link] [
DOI:10.1115/ICEF2004-0818]
6. Arsie I, Pianese C, Rizzo G. Enhancement of control oriented engine models using neural network. Proceeding of the 6th IEEE Mediterranean Conference on Control and Systems, June 9-11, Alghero, 1998, Piscataway: IEEE; 1998. [
Link]
7. Müller R, Hemberger HH. Neural adaptive ignition control. SAE Transactions. 1998;107:1636-1641. [
Link] [
DOI:10.4271/981057]
8. Gang X, Jianwu Z, Li Ch. On-line stateprediction of engines based on fast neural network. SAE 2001 World Congress, 5-8 March, 2001, Detroit, Michigan, USA. Warrendale: SAE International; 2001. [
Link] [
DOI:10.4271/2001-01-0562]
9. He Y, Rutland CJ. Modeling of a turbocharged di diesel engine using artificial neural networks. SAE Transactions. 2002;111:1532-1543. [
Link] [
DOI:10.4271/2002-01-2772]
10. He Y, Rutland CJ. Neural cylinder model and its transient results. SAE Technical Paper 2003-01-3232; 2003. [
Link]
11. He Y, Rutland CJ. Application of artificial neural networks in engine modelling. International Journal of Engine Research. 2004;5(4):281-296. [
Link] [
DOI:10.1243/146808704323224204]
12. Brahma I, He Y, Rutland CJ. Improvement of neural network accuracy for engine simulations. SAE Technical Paper 2003-01-3227; 2003. [
Link]
13. Brusca S, Lanzafame R, Messina M. A combustion model for ICE by means of neural network. SAE Technical Paper 2005-01-2110; 2005. [
Link]
14. Samadani E, Shamekhi AH, Behroozi MH, Chini R. A method for pre-calibration of DI diesel engine emissions and performance using neural network and multi-objective genetic algorithm. Iranian Journal of Chemistry and Chemical Engineering. 2009;28(4):61-70. [
Link]
15. Kumar Sh, Srinivasa Pai P, Shrinivasa Rao BR. Artificial neural network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings. Applied Energy. 2011;88(7):2344-2354. [
Link] [
DOI:10.1016/j.apenergy.2010.12.030]
16. Ismail HM, Ng HK, Queck CW, Gan S. Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends. Applied Energy. 2012;92:769-777. [
Link] [
DOI:10.1016/j.apenergy.2011.08.027]
17. Cay Y, Çiçek A, Kara F, Sağiroğlu S. Prediction of engine performance for an alternative fuel using artificial neural network. Applied Thermal Engineering. 2012;37:217-225. [
Link] [
DOI:10.1016/j.applthermaleng.2011.11.019]
18. Janakiraman VM, Nguyen X, Assanis D. Nonlinear identification of a gasoline HCCI engine using neural networks coupled with principal component analysis. Applied Soft Computing. 2013;13(5):2375-2389. [
Link] [
DOI:10.1016/j.asoc.2013.01.006]
19. Roy S, Banerjee R, Bose PK. Performance and exhaust emissions prediction of a CRDI assisted single cylinder diesel engine coupled with EGR using artificial neural network. Applied Energy. 2014;119:330-340. [
Link] [
DOI:10.1016/j.apenergy.2014.01.044]
20. Nikzadfar K, Shamekhi AH. Investigating the relative contribution of operational parameters on performance and emissions of a common-rail diesel engine using neural network. Fuel. 2014;125:116-128. [
Link] [
DOI:10.1016/j.fuel.2014.02.021]
21. Kapusuz M, Ozcan H, Yamin JA. Research of performance on a spark ignition engine fueled by alcohol-gasoline blends using artificial neural networks. Applied Thermal Engineering. 2015;91:525-534. [
Link] [
DOI:10.1016/j.applthermaleng.2015.08.058]
22. Tosun E, Aydin K, Bilgili M. Comparison of linear regression and artificial neural network model of a diesel engine fueled with biodiesel-alcohol mixtures. Alexandria Engineering Journal. 2016;55(4):3081-3089. [
Link] [
DOI:10.1016/j.aej.2016.08.011]
23. Acharya N, Acharya S, Panda S, Nanda P. An artificial neural network model for a diesel engine fuelled with mahua biodiesel. In: Behera HS, Mohapatra DP, editors. Computational intelligence in data mining: Proceedings of the international conference on CIDM, 10-11 December 2016. Singapore: Springer; 2017. pp. 193-201. [
Link] [
DOI:10.1007/978-981-10-3874-7_19]
24. Gürgen S, Ünver B, Altın İ. Prediction of cyclic variability in a diesel engine fueled with n-butanol and diesel fuel blends using artificial neural network. Renewable Energy. 2018;117:538-544. [
Link] [
DOI:10.1016/j.renene.2017.10.101]
25. MathWorks. MATLAB R2018b Help [Internet]. Natick: MathWorks; 2018 [cited 2018 Oct 01]. Available from: Not Found [
Link]
26. Hagan MT, Demuth HB, Beale M. Neural network design. 1st Edition. Boston: PWS Publishing Company; 1996. [
Link]
27. Krose B. An introduction to neural network. 8th Edition. Amsterdam: University of Amsterdam; 1996. [
Link]
28. Heykin S. Neural networks: A comprehensive foundation. 2nd Edition. Upper Saddle River: Prentice Hall PTR; 1998. [
Link]
29. Nelles O. Nonlinear system identification: From classical approaches to neural networks and fuzzy models. 1st Edition. Berlin: Springer; 2001. [
Link] [
DOI:10.1007/978-3-662-04323-3]
30. Heywood J. Internal combustion engine fundamentals. 1st Edition. New York: McGraw-Hill; 1988. [
Link]