Volume 19, Issue 5 (May 2019)                   Modares Mechanical Engineering 2019, 19(5): 1297-1305 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Keramat Siavash N, Najafi G, Tavakoli T, Ghobadian B, Mahmoodi E. Ducted wind turbine investigation in a wind tunnel . Modares Mechanical Engineering 2019; 19 (5) :1297-1305
URL: http://mme.modares.ac.ir/article-15-26963-en.html
1- Mechanic of Biosystems Department, Agricultural Faculty, Tarbiat Modares University, Tehran Iran
2- Mechanic of Biosystems Department, Agricultural Faculty, Tarbiat Modares University, Tehran Iran , g.najafi@modares.ac.ir
3- Mechanic of biosystems Department, Agriculture Faculty, Shahrood University of Technology, Shahrood, Iran
Abstract:   (3745 Views)
In this study, the performance of a wind turbine is compared with a bare one using wind tunnel results. wind turbines, which consist of a diffuser surrounding the rotor. The duct makes more air flow in rotor plain and as a result augments power production. The blade was fabricated, using armed by glass fiber. Duct is formed sheet metal rolling in slope to have an acceptable appearance. According to BEM design, predicted power the bare turbine is 300W in wind velocity 10 m/s considering due to bearing resistant, rotor inertia, and generator efficiency. Wind tunnel investigation revealed 165W for The evaluation of the system in the wind tunnel showed that the power augmentation of the system compared to the bare one was 37% higher on average. The maximum power augmentation of the turbine was 286W. The rotor 61% more than the bare turbine, which increased the speed of the tip of the blade.
Full-Text [PDF 1022 kb]   (2969 Downloads)    
Article Type: Original Research | Subject: Wind Turbine
Received: 2018/11/8 | Accepted: 2018/12/16 | Published: 2019/05/1

1. Satba. Renewablea 2017, The global status report [Internet]. Tehran: Satba; 2018 [cited 2018 Nov 01]. Available from: http://www.satba.gov.ir/suna_content/media/image/2018/01/5925_orig.pdf. [Persian] [Link]
2. Lilley GM, Rainbird WJ. A preliminary report on the design and performance of ducted windmills [Internet]. Cranfield: College of Aeronautics Cranfield; 1956 [cited 2018 Nov 01]. Available from: https://repository.tudelft.nl/view/aereports/uuid:d7e0a307-9e15-46d9-9972-621ba121881c [Link]
3. Kogan A, Nissim E, Seginer A. Shrouded aerogenerator design study. Haifa: Technion Research and Development Foundation; 1961. [Link]
4. Igra O. Design and performance of a turbine suitable for an aerogenerator. Energy Conversion. 1976;15(3-4):143-151. [Link] [DOI:10.1016/0013-7480(76)90026-7]
5. Igra O. Shrouds for aerogenerators. AIAA Journal. 1976;14(10):1481-1483. [Link] [DOI:10.2514/3.61486]
6. Igra O. Compact shrouds for wind turbines. Energy Conversion. 1977;16(4):149-157. [Link] [DOI:10.1016/0013-7480(77)90022-5]
7. Igra O. The shrouded aerogenerator. Energy. 1977;2(4):429-439. [Link] [DOI:10.1016/0360-5442(77)90006-8]
8. Igra O. Research and development for shrouded wind turbines. Energy Conversion and Management. 1981;21(1):13-48. [Link] [DOI:10.1016/0196-8904(81)90005-4]
9. Foreman KM. Preliminary design and economic investigations of diffuser augmented wind turbines (DAWT). Bangi: Solar Energy Research Institute; 1982. [Link]
10. Foreman KM. Size effects in DAWT innovative wind energy system design. Journal of Solar Energy Engineering. 1983;105(4):401-407. [Link] [DOI:10.1115/1.3266399]
11. Foreman KM, Gilbert B, Oman RA. Diffuser augmentation of wind turbines. Solar Energy. 1978;20(4):305-311. [Link] [DOI:10.1016/0038-092X(78)90122-6]
12. Giguere P, Selig MS. New airfoils for small horizontal axis wind turbines. Journal of Solar Energy Engineering. 1998;120(2):108-114. [Link] [DOI:10.1115/1.2888052]
13. Gilbert BL, Foreman KM. Experimental demonstration of the diffuser-augmented wind turbine concept. Journal of Energy. 1979;3(4):235-240. [Link] [DOI:10.2514/3.48002]
14. Gilbert BL, Foreman KM. Experiments with a diffuser-augmented model wind turbine. Journal of Energy Resources Technology. 1983;105(1):46-53. [Link] [DOI:10.1115/1.3230875]
15. Gilbert BL, Oman RA, Foreman KM. Fluid dynamics of diffuser-augmented wind turbines. Journal of Energy. 1978;2(6):368-374. [Link] [DOI:10.2514/3.47988]
16. Fletcher CAJ. Computational analysis of diffuser-augmented wind turbines. Energy Conversion and Management. 1981;21(3):175-183. [Link] [DOI:10.1016/0196-8904(81)90012-1]
17. Phillips DG. An investigation on diffuser augmented wind turbine design [Dissertation]. Auckland: The University of Auckland; 2003. [Link]
18. Hansen MOL, Sørensen NN, Flay RGJ. Effect of placing a diffuser around a wind turbine. Wind Energy. 2000;3(4):207-213. [Link] [DOI:10.1002/we.37]
19. Van Bussel GJW. The science of making more torque from wind: Diffuser experiments and theory revisited. Journal of Physics Conference Series. 2007;75(75):012010. [Link] [DOI:10.1088/1742-6596/75/1/012010]
20. Kishore RA, Coudron T, Priya Sh. Small-scale wind energy portable turbine (SWEPT). Journal of Wind Engineering and Industrial Aerodynamics. 2013;116:21-31. [Link] [DOI:10.1016/j.jweia.2013.01.010]
21. Bontempo R, Manna M. Performance analysis of open and ducted wind turbines. Applied Energy. 2014;136:405-416. [Link] [DOI:10.1016/j.apenergy.2014.09.036]
22. Bontempo R, Manna M. Effects of the duct thrust on the performance of ducted wind turbines. Energy. 2016;99:274-287. [Link] [DOI:10.1016/j.energy.2016.01.025]
23. Shi W, Wang D, Atlar M, Guo B, Seo KC. Optimal design of a thin-wall diffuser for performance improvement of a tidal energy system for an AUV. Ocean Engineering. 2015;108:1-9. [Link] [DOI:10.1016/j.oceaneng.2015.07.064]
24. Aranake A, Duraisamy K. Aerodynamic optimization of shrouded wind turbines. Wind Energy. 2017;20(5):877-889. [Link] [DOI:10.1002/we.2068]
25. Ohya Y, Miyazaki J, Göltenbott U, Watanabe K. Power augmentation of shrouded wind turbines in a multirotor system. Journal of Energy Resources Technology. 2017;139(5):051202. [Link] [DOI:10.1115/1.4035754]
26. Göltenbott U, Ohya Y, Yoshida Sh, Jamieson P. Aerodynamic interaction of diffuser augmented wind turbines in multi-rotor systems. Renewable Energy. 2017;112:25-34. [Link] [DOI:10.1016/j.renene.2017.05.014]
27. Burton T, Jenkins N, Sharpe D, Bossanyi E. Wind energy handbook. 2nd Edition. Hoboken: John Wiley & Sons; 2011. [Link] [DOI:10.1002/9781119992714]
28. International Electrotechnical Commission. Wind turbines-part 1: Design requirements [Internet]. Geneva: International Electrotechnical Commission; 2005 [cited 2018 Nov 01 cited 2018 Nov 01]. Available from: https://www.saiglobal.com/pdftemp/previews/osh/iec/iec61000/61400/iec61400-1%7Bed3.0%7Den.pdf [Link]
29. Ohya Y, Karasudani T. A shrouded wind turbine generating high output power with wind-lens technology. Energies. 2010;3(4):634-649. [Link] [DOI:10.3390/en3040634]
30. Abe K, Nishida M, Sakurai A, Ohya Y, Kihara H, Wada E, et al. Experimental and numerical investigations of flow fields behind a small wind turbine with a flanged diffuser. Journal of Wind Engineering and Industrial Aerodynamics. 2005;93(12):951-970. [Link] [DOI:10.1016/j.jweia.2005.09.003]
31. Tavares Dias do Rio Vaz DA, Amarante Mesquita A, LuizAmarante Mesquita A, Pinheiro Vaz JR, Cavalcante Blanco CJ. An extension of the blade element momentum method applied to diffuser augmented wind turbines. Energy Conversion and Management. 2014;87:1116-1123. [Link] [DOI:10.1016/j.enconman.2014.03.064]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.