1. Crabtree GW, Lewis NS. Solar energy conversion. Physics today. 2007;60(3):37-42. [
Link] [
DOI:10.1063/1.2718755]
2. Mallick TM, Eames PC. Design and fabrication of low concentrating second generation PRIDE concentrator. Solar Energy Materials and Solar Cells. 2007;91(7):597-608. [
Link] [
DOI:10.1016/j.solmat.2006.11.016]
3. Li M, Li G, Ji X, Yin F, Xu L. The performance analysis of the trough concentrating solar photovoltaic/thermal system. Energy Conversion and Management. 2011;52(6):2378-2383. [
Link] [
DOI:10.1016/j.enconman.2010.12.039]
4. Helmers H, Bett AW, Parisi J, Agert C. Modeling of concentrating photovoltaic and thermal systems. Progress in Photovoltaics: Research and Applications. 2014;22(4):427-439. [
Link] [
DOI:10.1002/pip.2287]
5. Renno C, Petito F. Design and modeling of a concentrating photovoltaic thermal (CPV/T) system for a domestic application. Energy and Buildings. 2013;62:392-402. [
Link] [
DOI:10.1016/j.enbuild.2013.02.040]
6. Xu N, Ji J, Sun W, Huang W, Jin Z. Electrical and thermal performance analysis for a highly concentrating photovoltaic/thermal system. International Journal of Photoenergy. 2015;2015:ID 537538. [
Link] [
DOI:10.1155/2015/537538]
7. Rezania A, Rosendahl LA. Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system. Applied Energy. 2017;187:380-389. [
Link] [
DOI:10.1016/j.apenergy.2016.11.064]
8. Hosseinzadeh M, Salari A, Sardarabadi M, Passandideh-Fard M. Parametric analysis of a nanofluid based photovoltaic thermal system, using computational fluid dynamic. Modares Mechanical Engineering. 2017;17(9):195-204. [Persian] [
Link]
9. Hosseinzadeh M, Kazemian A, Sardarabadi M, Passandideh-Fard M. Experimental investigation of using water and ethylene glycol as coolants in a photovoltaic thermal system. Modares Mechanical Engineering. 2017;17(11):12-20. [Persian] [
Link]
10. Daneshazarian R, Cuce E, Cuce PM, Sher F. Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications. Renewable and Sustainable Energy Reviews. 2018;81:473-492. [
Link] [
DOI:10.1016/j.rser.2017.08.013]
11. Kratochvil JA, Boyson WE, King DL. Photovoltaic array performance model. United States: Sandia National Laboratories, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration; 2004 Dec. Reaport No.: SAND2004-3535. Contract: DE-AC04-94AL85000. [
Link]
12. Duffie JA, Beckman WA. Solar engineering of thermal processes. New Jeresy: John Wiley & Sons; 2013. [
Link] [
DOI:10.1002/9781118671603]
13. Skoplaki E, Palyvos JA. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar Energy. 2009;83(5):614-624. [
Link] [
DOI:10.1016/j.solener.2008.10.008]
14. Pérez-Higueras P, Fernández EF, editors. High concentrator photovoltaics: Fundamentals, Engineering and Power Plants. 1st Edition. Salmon Tower Building New York City: Springer International Publishing; 2015. [
Link] [
DOI:10.1007/978-3-319-15039-0]
15. IEC 61724: Photovoltaic system performance monitoring-guidelines for measurement, data exchange and analysis. Commission Electrotechnique Internationale; 1998. [
Link]
16. Blank LT, Tarquin AJ. Basics of engineering economy. New York City: McGraw-Hill Companies,Incorporated; 2007. [
Link]
17. Gaur A, Tiwari G. Performance of photovoltaic modules of different solar cells. Journal of Solar Energy. 2013;2013: ID 734581. [
Link] [
DOI:10.1155/2013/734581]
18. Jo JH, Waszak R, Shawgo M. Feasibility of concentrated photovoltaic systems (CPV) in various united states geographic locations. Energy Technology & Policy. 2014;1(1):84-90. [
Link] [
DOI:10.1080/23317000.2014.971982]
19. Barry M, Ramachandran G. Power generation technology data for integrated resource plan of South Africa. California: Electric Power Research Institute (EPRI); 2010. [
Link]
20. Edalati S, Ameri M, Iranmanesh M, Tarmahi H, Gholampour M. Technical and economic assessments of grid-connected photovoltaic power plants: Iran case study. Energy. 2016;114:923-934. [
Link] [
DOI:10.1016/j.energy.2016.08.041]
21. Avestamarket [Internet]. Zanjan: Solar Panel Store; 2018 [cited 2018 March 21]. Available from: www.avestamarket.com. [Persian] [
Link]
22. SATBA [Internet]. Tehran: Renewable Energy and Energy Efficiency Organization; 2018 [cited 2018 March 21]. Available from: www.satba.gov.ir. [Persian] [
Link]
23. Hussain MI, Lee CH. Experimental and numerical studies of a U-shaped solar energy collector to track the maximum CPV/T system output by varying the flow rate. Renewable Energy. 2015;76:735-742. [
Link] [
DOI:10.1016/j.renene.2014.12.008]
24. Rumyantsev VD, Andreev VM, Chekalin AV, Davidyuk NY, Sadchikov NA. HCPV modules of SMALFOC design in versions for PV and PV/T operation. 40th Photovoltaic Specialist Conference (PVSC), 8-13 June 2014, Denver, CO, USA. Piscataway: IEEE; 2014. pp. 2720-2723. [
Link] [
DOI:10.1109/PVSC.2014.6925491]
25. Kribus A, Kaftori D, Mittelman G, Hirshfeld A, Flitsanov Y, Dayan A. A miniature concentrating photovoltaic and thermal system. Energy Conversion and Management. 2006;47(20):3582-3590. [
Link] [
DOI:10.1016/j.enconman.2006.01.013]
26. Chayet H, Kost O, MoranR, Lozovsky I. Efficient, low cost dish concentrator for a CPV based cogeneration system. AIP Conference Proceedings. 2011;1407(1):10.1063/1.3658337. [
Link] [
DOI:10.1063/1.3658337]
27. Renno C. Optimization of a concentrating photovoltaic thermal (CPV/T) system used for a domestic application. Applied Thermal Engineering. 2014;67(1-2):396-408. [
Link] [
DOI:10.1016/j.applthermaleng.2014.03.026]