Volume 19, Issue 8 (August 2019)                   Modares Mechanical Engineering 2019, 19(8): 1929-1941 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Omiddezyani S, Khazaee I, Gharehkhani S, Ashjaee M, Shemirani F, Zandian V. Experimental Investigation of Convective Heat Transfer of Ferro-Nanofluid Containing Graphene in a Circular Tube under Magnetic Field. Modares Mechanical Engineering 2019; 19 (8) :1929-1941
URL: http://mme.modares.ac.ir/article-15-27179-en.html
1- Faculty of Mechanical & Energy Engineering, Shahid Behehshti University, Tehran, Iran
2- Faculty of Chemical Engineering, Lakehead University, Ontario, Canada
3- Faculty of Mechanical Engineering, University of Tehran, Tehran, Iran , ashjaee@ut.ac.ir
4- Chemistry Department, Science Faculty, University of Tehran, Tehran, Iran
5- Rotary Machine Department, Mechanical Repair Unit, Parsian Gas Refinery Company, Lamerd, Iran
Abstract:   (6206 Views)
Today, nanofluid is attracting intense research due to its potential to augment the heat transfer rate and the cooling rate in many systems. On the other hand, new research progresses indicate that graphene nanofluids even in very low concentrations could provide higher convective heat transfer coefficient in comparison to the conventional nanofluids. For this reason, we used nanofluid containing the CoFe2O4/GO nanoparticles as working fluid to perform experimental investigation of its effect on laminar forced convective heat transfer in the flow passing through a copper tube, which is under a uniform heat flux. It should be noted that utilizing magnetic field on nanoparticles is one of the active methods for improving the heat transfer rate. To achieve this objective, the effect of external magnetic field intensity and also the effect of applying different frequencies on the improvement of heat transfer in Reynolds number and different concentration is also investigated and the optimum frequency were obtained. The results showed that the heat transfer of the studied hybrid nanofluid has been improved in the presence of constant and alternating magnetic fields and the amount of heat transfer increment, due to an alternating magnetic field, is more significant compared with a constant magnetic field. The results also show that in the absence of magnetic field, using ferrofluid with concentration of φ=0.6%, improves the average enhancement in convective heat transfer up to 15.2% relative to the DI-water at Re=571, while this value is increased up to 19.7% and 31% by using constant and alternating magnetic field, respectively.
Full-Text [PDF 1158 kb]   (3269 Downloads)    
Article Type: Original Research | Subject: Heat & Mass Transfer
Received: 2018/11/14 | Accepted: 2018/09/2 | Published: 2019/08/12

References
1. 1- Liu MS, Lin MCC, Huang IT, Wang CC. Enhancement of thermal conductivity with carbon nanotube for nanofluids. International Communications in Heat and Mass Transfer. 2005;32(9):1202-1210. [Link] [DOI:10.1016/j.icheatmasstransfer.2005.05.005]
2. Liu MS, Lin MCC, Huang IT, Wang CC. Enhancement of thermal conductivity with CuO for nanofluids. Chemical Engineering Technology. 2006;29(1):72-77. [Link] [DOI:10.1002/ceat.200500184]
3. Keblinski P, Prasher R, Eapen J. Thermal conductance of nanofluids: Is the controversy over?. Journal of Nanoparticle Research. 2008;10(7):1089-1097. [Link] [DOI:10.1007/s11051-007-9352-1]
4. Abareshi M, Goharshadi EK, Zebarjad SM, Khandan Fadafan H, Youssefi A. Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. Journal of Magnetism and Magnetic Materials. 2010;322(24):3895-3901. [Link] [DOI:10.1016/j.jmmm.2010.08.016]
5. Sharma P, Baek IH, Cho T, Park S, Lee KB. Enhancement of thermal conductivity of ethylene glycol based silver nanofluids. Powder Technology. 2011;208(1):7-19. [Link] [DOI:10.1016/j.powtec.2010.11.016]
6. Wen D, Lin G, Vafaei S, Zhang K. Review of nanofluids for heat transfer applications. Particuology. 2009;7(2):141-150. [Link] [DOI:10.1016/j.partic.2009.01.007]
7. Li Q, Xuan Y, Wang J. Experimental investigations on transport properties of magnetic fluids. Experimental Thermal and Fluid Science. 2005;30(2):109-116. [Link] [DOI:10.1016/j.expthermflusci.2005.03.021]
8. Philip J, Shima PD, Raj B. Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures. Applied Physics Letters. 2007;91(20):203108. [Link] [DOI:10.1063/1.2812699]
9. Wright B, Thomas D, Hong H, Groven L, Puszynski J, Duke E, et al. Magnetic field enhanced thermal conductivity in heat transfer nanofluids containing Ni coated single wall carbon nanotubes. Applied Physics Letters. 2007;91(17):173116. [Link] [DOI:10.1063/1.2801507]
10. Parekh K, Lee HS. Magnetic field induced enhancement in thermal conductivity of magnetite nanofluid. Journal of Applied Physics. 2010;107(9):09A310. [Link] [DOI:10.1063/1.3348387]
11. Gavili A, Zabihi F, Dallali Isfahani T, Sabbaghzadeh J. The thermal conductivity of water base ferrofluids under magnetic field. Experimental Thermal and Fluid Science. 2012;41:94-98. [] [DOI:10.1016/j.expthermflusci.2012.03.016]
12. Huminic G, Huminic A. Heat transfer characteristics in double tube helical heat exchangers using nanofluids. International Journal of Heat and Mass Transfer. 2011;54(19-20):4280-4287. [Link] [DOI:10.1016/j.ijheatmasstransfer.2011.05.017]
13. Aminfar H, Mohammadpourfard M, Ahangar Zonouzi S. Numerical study of the ferrofluid flow and heat transfer through a rectangular duct in the presence of a non-uniform transverse magnetic field. Journal of Magnetism and Magnetic Materials. 2013;327:31-42. [Link] [DOI:10.1016/j.jmmm.2012.09.011]
14. Yarmand H, Gharehkhani S, Newaz Kazi S, Sadeghinezhad E, Safaei MR. Numerical investigation of heat transfer enhancement in a rectangular heated pipe for turbulent nanofluid. The Scientific World Journal. 2014;2014;369593. [Link] [DOI:10.1155/2014/369593]
15. Malvandi A, Domiri Ganji D. Effects of nanoparticle migration and asymmetric heating on magnetohydrodynamic forced convection of alumina/water nanofluid in microchannels. European Journal of Mechanics B Fluids. 2015;52:169-184. [Link] [DOI:10.1016/j.euromechflu.2015.03.004]
16. Malvandi A, Safaei MR, Kaffash MH, Domiri Ganji D. MHD mixed convection in a vertical annulus filled with Al2O3-water nanofluid considering nanoparticle migration. Journal of Magnetism and Magnetic Materials. 2015;382:296-306. [Link] [DOI:10.1016/j.jmmm.2015.01.060]
17. Xuan Y, Li Q. Investigation on convective heat transfer and flow features of nanofluids. Journal of Heat Transfer. 2003;125(1):151-155. [Link] [DOI:10.1115/1.1532008]
18. Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer. 2004;47(24):5181-5188. [Link] [DOI:10.1016/j.ijheatmasstransfer.2004.07.012]
19. Jung JY, Oh HS, Kwak HY. Forced convective heat transfer of nanofluids in microchannels. ASME International Mechanical Engineering Congress and Exposition, November 5-10, 2006, Chicago, Illinois, USA. New York: ASME; 2006. [Link] [DOI:10.1115/IMECE2006-13851]
20. Duangthongsuk W, Wongwises S. Heat transfer enhancement and pressure drop characteristics of TiO2-water nanofluid in a double-tube counter flow heat exchanger. International Journal of Heat and Mass Transfer. 2009;52(7-8):2059-2067. [Link] [DOI:10.1016/j.ijheatmasstransfer.2008.10.023]
21. Lajvardi M, Moghimi Rad J, Hadi I, Gavili A, Dallali Isfahani T, Zabihi F, et al. Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect. Journal of Magnetism and Magnetic Materials. 2010;322(21):3508-3513. [Link] [DOI:10.1016/j.jmmm.2010.06.054]
22. Motozawa M, Chang J, Sawada T, Kawaguchi Y. Effect of magnetic field on heat transfer in rectangular duct flow of a magnetic fluid. Physics Procedia. 2010;9:190-193. [Link] [DOI:10.1016/j.phpro.2010.11.043]
23. Zamzamian AH, Nasseri Oskouie Sh, Doosthoseini A, Joneidi AA, Pazouki M. Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow. Experimental Thermal and Fluid Science. 2011;35(3):495-502. [Link] [DOI:10.1016/j.expthermflusci.2010.11.013]
24. Syam Sundar L, Naik MT, Sharma KV, Singh MK, Reddy TCS. Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid. Experimental Thermal and Fluid Science. 2012;37:65-71. [Link] [DOI:10.1016/j.expthermflusci.2011.10.004]
25. Ghofrani A, Dibaei MH, Hakim Sima A, Shafii MB. Experimental investigation on laminar forced convection heat transfer of ferrofluids under an alternating magnetic field. Experimental Thermal and Fluid Science. 2013;49:193-200. [Link] [DOI:10.1016/j.expthermflusci.2013.04.018]
26. Yarahmadi M, Moazami Goudarzi H, Shafii MB. Experimental investigation into laminar forced convective heat transfer of ferrofluids under constant and oscillating magnetic field with different magnetic field arrangements and oscillation modes. Experimental Thermal and Fluid Science. 2015;68:601-611. [Link] [DOI:10.1016/j.expthermflusci.2015.07.002]
27. Azizian R, Doroodchi E, Mc Krell T, Buongiorno J, Hu LW, Moghtaderi B. Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids. International Journal of Heat and Mass Transfer. 2014;68:94-109. [Link] [DOI:10.1016/j.ijheatmasstransfer.2013.09.011]
28. Goharkhah M, Salarian A, Ashjaee M, Shahabadi M. Convective heat transfer characteristics of magnetite nanofluid under the influence of constant and alternating magnetic field. Powder Technology. 2015;274:258-267. [Link] [DOI:10.1016/j.powtec.2015.01.031]
29. Shahsavar A, Saghafian M, Salimpour MR, Shafii MB. Experimental investigation on laminar forced convective heat transfer of ferrofluid loaded with carbon nanotubes under constant and alternating magnetic fields. Experimental Thermal and Fluid Science. 2016;76:1-11. [Link] [DOI:10.1016/j.expthermflusci.2016.03.010]
30. Goharkhah M, Ashjaee M, Shahabadi M. Experimental investigation on convective heat transfer and hydrodynamic characteristics of magnetite nanofluid under the influence of an alternating magnetic field. International Journal of Thermal Sciences. 2016;99:113-124. [Link] [DOI:10.1016/j.ijthermalsci.2015.08.008]
31. Hummers Jr WS, Offeman RE. Preparation of graphitic oxide. Journal of the American Chemical Society. 1958;80(6):1339-1339. [Link] [DOI:10.1021/ja01539a017]
32. Park S, Ruoff RS. Chemical methods for the production of graphenes. Nature Nanotechnology. 2009;4:217-224. [Link] [DOI:10.1038/nnano.2009.58]
33. Brinkman HC. The viscosity of concentrated suspensions and solutions. The Journal of Chemical Physics. 1952;20(4):571. [Link] [DOI:10.1063/1.1700493]
34. Bejan A, Kraus AD. Heat transfer handbook. Bejan A, Kraus AD, editors. Hoboken: John Wiley & Sons; 2003. [Link]
35. Li Q, Xuan Y. Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field. Experimental Thermal and Fluid Science. 2009;33(4):591-596. [Link] [DOI:10.1016/j.expthermflusci.2008.12.003]
36. Moffat RJ. Describing the uncertainties in experimental results. Experimental Thermal and Fluid Science. 1988;1(1):3-17. [Link] [DOI:10.1016/0894-1777(88)90043-X]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.