Volume 20, Issue 3 (March 2020)                   Modares Mechanical Engineering 2020, 20(3): 553-564 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shayan E, Zare V, Mirzaee I. Exergoeconomic Analysis of an Integrated Steam Biomass Gasification System with a Solid Oxide Fuel Cell for Power and Freshwater Generations. Modares Mechanical Engineering 2020; 20 (3) :553-564
URL: http://mme.modares.ac.ir/article-15-27327-en.html
1- Mechanical Engineering Department, Engineering Faculty, Urmia University, Urmia, Iran
2- Mechanical Engineering Department, Mechanical Engineering Faculty, Urmia University of Technology, Urmia, Iran , v.zare@uut.ac.ir
Abstract:   (5729 Views)
In recent years, the integration of biomass gasification with solid oxide fuel cells offers an emerging alternative for conventional power generation systems. Also, due to the ever-increasing human need for drinking water and the limitation of available drinking water resources, the desalination of the oceans saltwater is one of the promising solutions for the water scarcity problem. Therefore, in the present study, a novel integrated system containing steam biomass gasification, solid oxide fuel cell and multi-effect desalination system is introduced. Modeling and exergoeconomic analysis of the system is performed in EES software. A parametric study is conducted to examine the effects of key operating parameters on the net output power, exergy efficiency and unit product cost of the integrated system. The results indicate that the exergy efficiency and unit product cost of the integrated system are obtained 46.04% and 4.57$/GJ respectively.
Full-Text [PDF 1033 kb]   (1870 Downloads)    
Article Type: Original Research | Subject: Fuel Cell
Received: 2018/11/19 | Accepted: 2019/06/23 | Published: 2020/03/1

1. Pourfatemi SM, Ahmadi R. Thermo-economic analysis with reliability consideration of a hybrid system of gas turbine, SOFC and multiple effect desalinatin. Modares Mechanical Engineering. 2017;17(10):321-332. [Persian] [Link]
2. Hosseini SR, Amidpour M, Shakib SE. Cost optimization of a combined power and water desalination plant with exergetic, environment and reliability consideration. Desalination. 2012;285:123-130. [Link] [DOI:10.1016/j.desal.2011.09.043]
3. Brogioli D, La Mantia F, Yip NY. Thermodynamic analysis and energy efficiency of thermal desalination processes. Desalination. 2018;428:29-39. [Link] [DOI:10.1016/j.desal.2017.11.010]
4. Al-Mutaz IS, Wazeer I. Development of a steady-state mathematical model for MEE-TVC desalination plants. Desalination. 2014;351:9-18. [Link] [DOI:10.1016/j.desal.2014.07.018]
5. GadsbØll RØ, Thomsen J, Bang-MØller C, Ahrenfeldt J, Henriksen UB. Solid oxide fuel cells powered by biomass gasification for high efficiency power generation. Energy. 2017;131:198-206. [Link] [DOI:10.1016/j.energy.2017.05.044]
6. Shakib SE, Amidpour M, Aghanajafi C. Simulation and optimization of multi effect desalination coupled to a gas turbine plant with HRSG consideration. Desalination. 2012;285:366-376. [Link] [DOI:10.1016/j.desal.2011.10.028]
7. Akbarpour Reyhani H, Meratizaman M, Ebrahimi A, Pourali O, Amidpour M. Thermodynamic and economic optimization of SOFC-GT and its cogeneration opportunities using generated syngas from heavy fuel oil gasification. Energy. 2016;107:141-164. [Link] [DOI:10.1016/j.energy.2016.04.010]
8. Mokhtari H, Sepahvand M, Fasihfar A. Thermoeconomic and exergy analysis in using hybrid systems (GT+MED+RO) for desalination of brackish water in Persian Gulf. Desalination. 2016;399:1-15. [Link] [DOI:10.1016/j.desal.2016.07.044]
9. Ahmadi R, Pourfatemi SM, Ghaffari S. Exergoeconomic optimization of hybrid system of GT, SOFC and MED implementing genetic algorithm. Desalination. 2017;411:76-88. [Link] [DOI:10.1016/j.desal.2017.02.013]
10. Ameri M, Jorjani M. Performance assessment and multi-objective optimization of an integrated organic Rankine cycle and multi-effect desalination system. Desalination. 2016;392:34-45. [Link] [DOI:10.1016/j.desal.2016.04.009]
11. Najafi B, Shirazi A, Aminyavari M, Rinaldi F, Taylor RA. Exergetic, economic and environmental analyses and multi-objective optimization of an SOFC-gas turbine hybrid cycle coupled with an MSF desalination system. Desalination. 2014;334(1):46-59. [Link] [DOI:10.1016/j.desal.2013.11.039]
12. Meratizaman M, Monadizadeh S, Amidpour M. Introduction of an efficient small-scale freshwater-power generation cycle (SOFC-GT-MED), simulation, parametric study and economic assessment. Desalination. 2014;351:43-58. [Link] [DOI:10.1016/j.desal.2014.07.023]
13. Sanaye S, Asgari S. Four E analysis and multi-objective optimization of combined cycle power plants integrated with Multi-stage Flash (MSF) desalination unit. Desalination. 2013;320:105-117. [Link] [DOI:10.1016/j.desal.2013.04.023]
14. Hosseini SR, Amidpour M, Shakib SE. Cost optimization of a combined power and water desalination plant with exergetic, environment, and reliability considerationn. Desalination. 2012;285:123-130. [Link] [DOI:10.1016/j.desal.2011.09.043]
15. Minutillo M, Perna A, Jannelli E, Cigolotti V, Woo Nam S, Pil Yoon S, Wan Kwon B. Coupling of biomass gasification and SOFC-gas turbine hybrid system for small scale cogeneration applications. Energy Procedia. 2017;105:730-737. [Link] [DOI:10.1016/j.egypro.2017.03.383]
16. Tan L, Dong X, Gong Z, Wang M. Investigation on performance of an integrated SOFC-GE-KC power generation system using gaseous fuel from biomass gasification. Renewable Energy. 2017;107:448-461. [Link] [DOI:10.1016/j.renene.2017.02.012]
17. Jia J, Abudula A, Wei L, Sun B, Shi Y. Thermodynamic modeling of an integrated biomass gasification and solid oxide fuel cell system. Renewable Energy. 2015;81:400-410. [Link] [DOI:10.1016/j.renene.2015.03.030]
18. De Lorenzo G, Fragiacomo P. Energy analysis of an SOFC system fed by syngas. Energy Conversion and Management. 2015;93:175-186. [Link] [DOI:10.1016/j.enconman.2014.12.086]
19. Eveloy V, Rodgers P, Al-Alili A. Multi-objective optimization of a pressurized solid oxide fuel cell-gas turbine hybrid system integrated with seawater reverse osmosis. Energy. 2017;123:594-614. [Link] [DOI:10.1016/j.energy.2017.01.127]
20. Behzadi A, Habibollahzade A, Zare V, Ashjaee M. Multi-objective optimization of a hybrid biomass-based SOFC/GT/double effect absorption chiller/RO desalination system with CO2 recycle. Energy Conversion and Management. 2019;181:302-318. [Link] [DOI:10.1016/j.enconman.2018.11.053]
21. Shayan E, Zare V, Mirzaee I. On the use of different gasification agents in a biomass fueled SOFC by integrated gasifier: A comparative exergo-economic evaluation and optimization. Energy. 2019;171:1126-1138. [Link] [DOI:10.1016/j.energy.2019.01.095]
22. Shayan E, Zare V, Mirzaee I. Hydrogen production from biomass gasification; A theoretical comparison of using different gasification agents. Energy Conversion and Management. 2018;159:30-41. [Link] [DOI:10.1016/j.enconman.2017.12.096]
23. Gholamian E, Mahmoudi SMS, Zare V. Proposal, exergy analysis and optimization of a new biomass-based cogeneration system. Applied Thermal Engineering. 2016;93:223-235. [Link] [DOI:10.1016/j.applthermaleng.2015.09.095]
24. Mehr AS, Mahmoudi SMS, Yari M, Chitsaz A. Thermodynamic and exergoeconomic analysis of biogas fed solid oxide fuel cell power plants emphasizing on anode and cathode recycling: A comparative study. Energy Conversion and Management. 2015;105:596-606. [Link] [DOI:10.1016/j.enconman.2015.07.085]
25. Yari M, Saberi Mehr A, Seyed Mahmoudi SM, Santarelli M. A comparative study of two SOFC based cogeneration systems fed by municipal solid waste by means of either the gasifier or digester. Energy. 2016;114:586-602. [Link] [DOI:10.1016/j.energy.2016.08.035]
26. Ranjbar F, Chitsaz A, Mahmoudi SMS, Khalilarya S, Rosen MA. Energy and exergy assessments of a novel trigeneration system based on a solid oxide fuel cell. Energy Conversion and Management. 2014;87:318-327. [Link] [DOI:10.1016/j.enconman.2014.07.014]
27. Szargut J, Styrylska T. Approximate evaluation of the exergy of fuels. Brennst Warme Kraft. 1964;16(12):598-96. [German] [Link]
28. Abuadala A, Dincer I, Naterer GF. Exergy analysis of hydrogen production from biomass gasification. International Journal of Hydrogen Energy. 2010;35(10):4981-4990. [Link] [DOI:10.1016/j.ijhydene.2009.08.025]
29. Bejan A, Tsatsaronis G, Moran MJ. Thermal design and optimization. NewYork: John Wiley & Sons; 1995. P. 333-369. [Link]
30. Schuster G, Löffler G, Weigl K, Hofbauer H. Biomass steam gasification-an extensive parametric modeling study. Bioresour Technology. 2001;77(1):71-79. [Link] [DOI:10.1016/S0960-8524(00)00115-2]
31. Tao G, Armstrong T, Virkar A. Intermediate temperature solid oxide fuel cell (IT-SOFC) research and development activities at MSRI. Nineteenth Annual ACERC&ICES Conference, Utah, United States, February 17, 2005. Unknown Publisher; 2005. [Link]
32. Ashour MM. Steady state analysis of the Tripoli West LT-HT-MED plant. Desalination. 2003;152(1-3):191-194 [Link] [DOI:10.1016/S0011-9164(02)01062-7]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.