1. Pourfatemi SM, Ahmadi R. Thermo-economic analysis with reliability consideration of a hybrid system of gas turbine, SOFC and multiple effect desalinatin. Modares Mechanical Engineering. 2017;17(10):321-332. [Persian] [
Link]
2. Hosseini SR, Amidpour M, Shakib SE. Cost optimization of a combined power and water desalination plant with exergetic, environment and reliability consideration. Desalination. 2012;285:123-130. [
Link] [
DOI:10.1016/j.desal.2011.09.043]
3. Brogioli D, La Mantia F, Yip NY. Thermodynamic analysis and energy efficiency of thermal desalination processes. Desalination. 2018;428:29-39. [
Link] [
DOI:10.1016/j.desal.2017.11.010]
4. Al-Mutaz IS, Wazeer I. Development of a steady-state mathematical model for MEE-TVC desalination plants. Desalination. 2014;351:9-18. [
Link] [
DOI:10.1016/j.desal.2014.07.018]
5. GadsbØll RØ, Thomsen J, Bang-MØller C, Ahrenfeldt J, Henriksen UB. Solid oxide fuel cells powered by biomass gasification for high efficiency power generation. Energy. 2017;131:198-206. [
Link] [
DOI:10.1016/j.energy.2017.05.044]
6. Shakib SE, Amidpour M, Aghanajafi C. Simulation and optimization of multi effect desalination coupled to a gas turbine plant with HRSG consideration. Desalination. 2012;285:366-376. [
Link] [
DOI:10.1016/j.desal.2011.10.028]
7. Akbarpour Reyhani H, Meratizaman M, Ebrahimi A, Pourali O, Amidpour M. Thermodynamic and economic optimization of SOFC-GT and its cogeneration opportunities using generated syngas from heavy fuel oil gasification. Energy. 2016;107:141-164. [
Link] [
DOI:10.1016/j.energy.2016.04.010]
8. Mokhtari H, Sepahvand M, Fasihfar A. Thermoeconomic and exergy analysis in using hybrid systems (GT+MED+RO) for desalination of brackish water in Persian Gulf. Desalination. 2016;399:1-15. [
Link] [
DOI:10.1016/j.desal.2016.07.044]
9. Ahmadi R, Pourfatemi SM, Ghaffari S. Exergoeconomic optimization of hybrid system of GT, SOFC and MED implementing genetic algorithm. Desalination. 2017;411:76-88. [
Link] [
DOI:10.1016/j.desal.2017.02.013]
10. Ameri M, Jorjani M. Performance assessment and multi-objective optimization of an integrated organic Rankine cycle and multi-effect desalination system. Desalination. 2016;392:34-45. [
Link] [
DOI:10.1016/j.desal.2016.04.009]
11. Najafi B, Shirazi A, Aminyavari M, Rinaldi F, Taylor RA. Exergetic, economic and environmental analyses and multi-objective optimization of an SOFC-gas turbine hybrid cycle coupled with an MSF desalination system. Desalination. 2014;334(1):46-59. [
Link] [
DOI:10.1016/j.desal.2013.11.039]
12. Meratizaman M, Monadizadeh S, Amidpour M. Introduction of an efficient small-scale freshwater-power generation cycle (SOFC-GT-MED), simulation, parametric study and economic assessment. Desalination. 2014;351:43-58. [
Link] [
DOI:10.1016/j.desal.2014.07.023]
13. Sanaye S, Asgari S. Four E analysis and multi-objective optimization of combined cycle power plants integrated with Multi-stage Flash (MSF) desalination unit. Desalination. 2013;320:105-117. [
Link] [
DOI:10.1016/j.desal.2013.04.023]
14. Hosseini SR, Amidpour M, Shakib SE. Cost optimization of a combined power and water desalination plant with exergetic, environment, and reliability considerationn. Desalination. 2012;285:123-130. [
Link] [
DOI:10.1016/j.desal.2011.09.043]
15. Minutillo M, Perna A, Jannelli E, Cigolotti V, Woo Nam S, Pil Yoon S, Wan Kwon B. Coupling of biomass gasification and SOFC-gas turbine hybrid system for small scale cogeneration applications. Energy Procedia. 2017;105:730-737. [
Link] [
DOI:10.1016/j.egypro.2017.03.383]
16. Tan L, Dong X, Gong Z, Wang M. Investigation on performance of an integrated SOFC-GE-KC power generation system using gaseous fuel from biomass gasification. Renewable Energy. 2017;107:448-461. [
Link] [
DOI:10.1016/j.renene.2017.02.012]
17. Jia J, Abudula A, Wei L, Sun B, Shi Y. Thermodynamic modeling of an integrated biomass gasification and solid oxide fuel cell system. Renewable Energy. 2015;81:400-410. [
Link] [
DOI:10.1016/j.renene.2015.03.030]
18. De Lorenzo G, Fragiacomo P. Energy analysis of an SOFC system fed by syngas. Energy Conversion and Management. 2015;93:175-186. [
Link] [
DOI:10.1016/j.enconman.2014.12.086]
19. Eveloy V, Rodgers P, Al-Alili A. Multi-objective optimization of a pressurized solid oxide fuel cell-gas turbine hybrid system integrated with seawater reverse osmosis. Energy. 2017;123:594-614. [
Link] [
DOI:10.1016/j.energy.2017.01.127]
20. Behzadi A, Habibollahzade A, Zare V, Ashjaee M. Multi-objective optimization of a hybrid biomass-based SOFC/GT/double effect absorption chiller/RO desalination system with CO2 recycle. Energy Conversion and Management. 2019;181:302-318. [
Link] [
DOI:10.1016/j.enconman.2018.11.053]
21. Shayan E, Zare V, Mirzaee I. On the use of different gasification agents in a biomass fueled SOFC by integrated gasifier: A comparative exergo-economic evaluation and optimization. Energy. 2019;171:1126-1138. [
Link] [
DOI:10.1016/j.energy.2019.01.095]
22. Shayan E, Zare V, Mirzaee I. Hydrogen production from biomass gasification; A theoretical comparison of using different gasification agents. Energy Conversion and Management. 2018;159:30-41. [
Link] [
DOI:10.1016/j.enconman.2017.12.096]
23. Gholamian E, Mahmoudi SMS, Zare V. Proposal, exergy analysis and optimization of a new biomass-based cogeneration system. Applied Thermal Engineering. 2016;93:223-235. [
Link] [
DOI:10.1016/j.applthermaleng.2015.09.095]
24. Mehr AS, Mahmoudi SMS, Yari M, Chitsaz A. Thermodynamic and exergoeconomic analysis of biogas fed solid oxide fuel cell power plants emphasizing on anode and cathode recycling: A comparative study. Energy Conversion and Management. 2015;105:596-606. [
Link] [
DOI:10.1016/j.enconman.2015.07.085]
25. Yari M, Saberi Mehr A, Seyed Mahmoudi SM, Santarelli M. A comparative study of two SOFC based cogeneration systems fed by municipal solid waste by means of either the gasifier or digester. Energy. 2016;114:586-602. [
Link] [
DOI:10.1016/j.energy.2016.08.035]
26. Ranjbar F, Chitsaz A, Mahmoudi SMS, Khalilarya S, Rosen MA. Energy and exergy assessments of a novel trigeneration system based on a solid oxide fuel cell. Energy Conversion and Management. 2014;87:318-327. [
Link] [
DOI:10.1016/j.enconman.2014.07.014]
27. Szargut J, Styrylska T. Approximate evaluation of the exergy of fuels. Brennst Warme Kraft. 1964;16(12):598-96. [German] [
Link]
28. Abuadala A, Dincer I, Naterer GF. Exergy analysis of hydrogen production from biomass gasification. International Journal of Hydrogen Energy. 2010;35(10):4981-4990. [
Link] [
DOI:10.1016/j.ijhydene.2009.08.025]
29. Bejan A, Tsatsaronis G, Moran MJ. Thermal design and optimization. NewYork: John Wiley & Sons; 1995. P. 333-369. [
Link]
30. Schuster G, Löffler G, Weigl K, Hofbauer H. Biomass steam gasification-an extensive parametric modeling study. Bioresour Technology. 2001;77(1):71-79. [
Link] [
DOI:10.1016/S0960-8524(00)00115-2]
31. Tao G, Armstrong T, Virkar A. Intermediate temperature solid oxide fuel cell (IT-SOFC) research and development activities at MSRI. Nineteenth Annual ACERC&ICES Conference, Utah, United States, February 17, 2005. Unknown Publisher; 2005. [
Link]
32. Ashour MM. Steady state analysis of the Tripoli West LT-HT-MED plant. Desalination. 2003;152(1-3):191-194 [
Link] [
DOI:10.1016/S0011-9164(02)01062-7]