Volume 19, Issue 11 (November 2019)                   Modares Mechanical Engineering 2019, 19(11): 2653-2666 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khayat M, Mohebie M. Experimental Study of the Effect of Hybrid Nanofluids Deposition on Microchannels with Different Sections in Pool Boiling. Modares Mechanical Engineering 2019; 19 (11) :2653-2666
URL: http://mme.modares.ac.ir/article-15-29327-en.html
1- Mechanical Engineering Department, Science & Research Branch, Islamic Azad University, Tehran, Iran , mkhayat@srbiau.ac.ir
2- Mechanical Engineering Department, Science & Research Branch, Islamic Azad University, Tehran, Iran
Abstract:   (5160 Views)
This study aims to investigate the effect of nanoparticle deposition on the boiling surface in the presence of microchannel on the characteristics of boiling heat transfer. In this experimental study, the copper boiling surfaces including polished circular surface, rectangular and trapezoidal microchannels were used. The microchannels include feeding sub-channels perpendicular to the main channel, which increases the boiling surface and separates the downward cool fluid flow and upward hot bubbles. Nuclear boiling experiments on microchannel surfaces in the presence of a hybrid water-based nanofluid containing 70% titanium oxide and 30% OH-based multi-wall carbon nanotubes in volumetric concentrations of 0.1% and 0.5% have been conducted. The results of nanofluid boiling experiments on both microchannel surfaces show that with increasing concentrations, critical heat flux and heat transfer coefficient increases and the highest increase in critical heat flux and heat transfer coefficient is related to the hybrid nanofluid with 0.5 % volumetric concentration on the surface with trapezoidal microchannel and their values are 64.64% and 344.76%, respectively, compared to pure water boiling on the polished copper surface. Also, in boiling of pure water on the deposited surfaces with nanoparticles, the greatest increase in critical heat flux and heat transfer coefficient is related to the surface with trapezoidal microchannels with 0.1% volumetric concentration  and 0.5% and volumetric concentration  and  their values are 120.16% and 149.4% respectively, compared to pure water boiling on the polished copper surface.
 
Full-Text [PDF 1951 kb]   (1837 Downloads)    
Article Type: Original Research | Subject: Two & Multi Phase Flow
Received: 2019/01/12 | Accepted: 2019/05/21 | Published: 2019/11/21

References
1. Cooke D, Kandlikar SG. Effect of open microchannel geometry on pool boiling enhancemen. International Journal of Heat and Mass Transfer. 2012;55(4):1004-1013. [Link] [DOI:10.1016/j.ijheatmasstransfer.2011.10.010]
2. Jaikumar A, Kandlikar SG. Enhanced pool boiling heat transfer mechanisms for selectively sintered open microchannels. International Journal of Heat and Mass Transfer. 2015;88:652-661. [Link] [DOI:10.1016/j.ijheatmasstransfer.2015.04.100]
3. Jaikumar A, Kandlikar SG. Pool boiling enhancement through bubble induced convective liquid flow in feeder microchannels. Applied Physics Letters. 2016;108(4):041604. [Link] [DOI:10.1063/1.4941032]
4. Mirza Gheitaghy A, Samimi A, Saffari H. Surface structuring with inclined minichannels for pool boiling improvement. Applied Thermal Engineering. 2017;126:892-902. [Link] [DOI:10.1016/j.applthermaleng.2017.07.200]
5. Mirza Gheitaghy A, Saffari H, Mohebbi M. Investigation pool boiling heat transfer in U-shaped mesochannel with electrodeposited porous coating. Experimental Thermal and Fluid Science. 2016;76:87-97. [Link] [DOI:10.1016/j.expthermflusci.2016.03.011]
6. Walunj A, Sathyabhama A. Comparative study of pool boiling heat transfer from various microchannel geometries. Applied Thermal Engineering. 2017;128:672-683. [Link] [DOI:10.1016/j.applthermaleng.2017.08.157]
7. Kumar Das S, Djaya Putra NS, Roetzel W. Pool boiling characteristics of nano-fluids. International Journal of Heat and Mass Transfer. 2003;46(5):851-862. [Link] [DOI:10.1016/S0017-9310(02)00348-4]
8. Chopkar M, Das AK, Manna I, Das PK. Pool boiling heat transfer characteristics of ZrO2-water nanofluids from a flat surface in a pool. Heat and Mass Transfer. 2008;44(8):999-1004. [Link] [DOI:10.1007/s00231-007-0345-5]
9. Harish G, Emlin V, Sajith V. Effect of surface particle interactions during pool boiling of nanofluids. International Journal of Thermal Sciences. 2011;50(12):2318-2327. [Link] [DOI:10.1016/j.ijthermalsci.2011.06.019]
10. Sarafraz MM, Hormozi F. Pool boiling heat transfer to dilute copper oxide aqueous nanofluids. International Journal of Thermal Sciences. 2015;90:224-237. [Link] [DOI:10.1016/j.ijthermalsci.2014.12.014]
11. Amiri A, Shanbedi M, Amiri H, Zeinali Heris S, Kazi SN, Chew BT, et el. Pool boiling heat transfer of CNT/water nanofluids. Applied Thermal Engineering. 2014;71(1):450-459. [Link] [DOI:10.1016/j.applthermaleng.2014.06.064]
12. Ham J, Kim H, Yunchan S, Cho H. Experimental investigation of pool boiling characteristics in Al2O3 nanofluid according to surface roughness and concentration. International Journal of Thermal Sciences. 2017;114:86-97. [Link] [DOI:10.1016/j.ijthermalsci.2016.12.009]
13. Muhammad Ali H, Mustafa Generous M, Ahmad F, Irfan M. Experimental investigation of nucleate pool boiling heat transfer enhancement of TiO2-water based nanofluids. Applied Thermal Engineering. 2017;113:1146-1151. [Link] [DOI:10.1016/j.applthermaleng.2016.11.127]
14. Salari E, Peyghambarzadeh SM, Sarafraz MM, Hormozi F, Nikkhah V. Thermal behavior of aqueous iron oxide nano-fluid as a coolant on a flat disc heater under the pool boiling condition. Heat and Mass Transfer. 2017;53(1):265-275. [Link] [DOI:10.1007/s00231-016-1823-4]
15. Salimpour MR, Abdollahi A, Afrand M. An experimental study on deposited surfaces due to nanofluid pool boiling: Comparison between rough and smooth surfaces. Experimental Thermal and Fluid Science. 2017;88:288-300. [Link] [DOI:10.1016/j.expthermflusci.2017.06.007]
16. Abbasi SM, Rashidi A, Nemati A, Arzani K. The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina. Ceramics International. 2013;39(4):3885-3891. [Link] [DOI:10.1016/j.ceramint.2012.10.232]
17. Safi MA, Ghozatloo A, Hamidi AA, Shariaty-Niassar M. Calculation of heat transfer coefficient of MWCNT-TiO2 nanofluid in plate heat exchanger. International Journal of Nanoscience and Nanotechnology. 2014;3(10):153-162. [Link]
18. Bhosale GH, Borse SL. Pool boiling CHF enhancement with Al2o3-Cuo/H2o hybrid nanofluid. International Journal of Engineering Research & Technology (IJERT). 2013;2(10):946-950. [Link]
19. Kumar Gupta S, Dev Misra R. An experimental investigation on flow boiling heat transfer enhancement using Cu-TiO2 nanocomposite coating on copper substrate. Experimental Thermal and Fluid Science. 2018;98:406-419. [Link] [DOI:10.1016/j.expthermflusci.2018.06.012]
20. Morshed AKMM, Paul TC, Khan J. Effect of Cu-Al2O3 nanocomposite coating on flow boiling performance of a microchannel. Applied Thermal Engineering. 2013;51(1-2):1135-1143. [Link] [DOI:10.1016/j.applthermaleng.2012.09.047]
21. Moffat RJ. Describing the uncertainties in experimental results. Experimental Thermal and Fluid Science. 1988;1(1):3-17. [Link] [DOI:10.1016/0894-1777(88)90043-X]
22. Zuber N. Hydrodynamic aspects of boiling heat transfer transfer (Thesis). Technical Report. US: OSTI.GOV; 1959 June. Report No: AECU-4439. [Link] [DOI:10.2172/4175511]
23. Rohsenow WM. A method of correlating heat transfer data for surface boiling liquids. Technical Report. Cambridge: M.I.T. Division of Industrial Cooporation. 1951. Report No: 5. [Link]
24. Pioro LII. Experimental evaluation of constants for the Rohsenow pool boiling correlation. International Journal of Heat and Mass Transfer.1999;42(11):2003-2013. [Link] [DOI:10.1016/S0017-9310(98)00294-4]
25. Táboas F, Vallès M, Bourouis M, Gorenflo R. Pool boiling of ammonia/water and its pure component: Comparison data in literature with predictions of standard correlations. International Journal of Refrigeration. 2007;30(5):778-788. [Link] [DOI:10.1016/j.ijrefrig.2006.12.009]
26. Ahmed O, Hamed MS. Experimental investigation of the effect of particle deposition on pool boiling of nanofluids. International Journal of Heat and Mass Transfer. 2010;55(13-14):3423-3436. [Link] [DOI:10.1016/j.ijheatmasstransfer.2012.02.021]
27. Jaikumar A, Kandlikar SG. Ultra-high pool boiling performance and effect of channel width with selectively coated open microchannel. International Journal of Heat and Mass Transfer. 2016;95:795-805. [Link] [DOI:10.1016/j.ijheatmasstransfer.2015.12.061]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.