Abstract: (9074 Views)
Component of vapor-compression refrigeration cycle was modeled at steady state condition. Then, modeling and simulation of the whole cycle was performed to predict system parameters such as compressor work, cooling effect and coefficient of performance (COP) in various ambient conditions. The simulation results were compared with experimental results obtained from an experimental investigation on a split-type air conditioner. It was found that the experimental and simulation results are in good agreement and the model can predict the performance of the cycle successfully. Average difference between experimental and simulation results for prediction of COP was 4.5%. Simulation results show that for each 1℃ increase in ambient temperature, COP reduces 3.5%, and for 10% increase in ambient relative humidity, COP increases about 6.5%. Also, by increasing the air volumetric flow rate of condenser about 10%, COP increases about 5%. Effect of increasing the condenser area on its heat rejection rate was studied and it was found that increasing the condenser area, increases the heat rejection rate substantially only in a limited range and after that it does not change.
Article Type:
Research Article |
Subject:
Heat & Mass Transfer Received: 2011/05/10 | Accepted: 2012/01/31 | Published: 2012/04/30