Volume 20, Issue 4 (April 2020)                   Modares Mechanical Engineering 2020, 20(4): 933-941 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Motallebi Savarabadi M, Faraji G, Eftekhari M. Experimental Investigation of the Effects of Two-Pass Hydrostatic Cyclic Expansion Extrusion Process on the Mechanical Properties and Microstructure of Pure Copper Tubes. Modares Mechanical Engineering 2020; 20 (4) :933-941
URL: http://mme.modares.ac.ir/article-15-31597-en.html
1- Mechanical Engineering Department, Engineering Faculty, University of Tehran, Tehran, Iran
2- Mechanical Engineering Department, Engineering Faculty, University of Tehran, Tehran, Iran , ghfaraji@ut.ac.ir
Abstract:   (1809 Views)
Hydrostatic tube cyclic expansion extrusion process is a newly invented severe plastic deformation technique for producing long ultrafine-grained and nanostructured tubes with higher mechanical properties. In the present research, this process was applied through two passes at room temperature on the commercial purity copper. Then, the hardness, tensile properties, fracture surface and microstructure of the samples were evaluated. The main goal of this research was to achieve a material with a simultaneous high strength and desirable ductility. In this process, the utilization of pressurized fluid between the die and the tube leads to first, the desired improvement of mechanical properties due to the effects of hydrostatic compressive stress. Second, the reduction of a required deforming force to eliminating the friction between the die and the tube leads to the facilitation of producing relatively long ultrafine-grained and nanostructured tubes. After two passes of process, a nearly equiaxed and homogeneous ultrafine-grained (UFG) microstructure was observed. The yield strength and ultimate strength increased from 75 MPa and 207 MPa to 310 MPa and 386 MPa, respectively. However, elongation to failure decreased from 55% to 37%. Also, the hardness value of the tube increased significantly from 59 Hv to 143 Hv, and the uniform distribution of hardness was obtained through the thickness of the tube. The fractography evaluations revealed that the predominantly ductile fracture happened in all samples of tensile testing. The hydrostatic tube cyclic expansion extrusion process can be utilized as a practical industrial method for producing relatively long ultrafine-grained tubes.
Full-Text [PDF 691 kb]   (1450 Downloads)    
Article Type: Original Research | Subject: Metal Forming
Received: 2019/07/23 | Accepted: 2019/12/9 | Published: 2020/04/17

References
1. Eftekhari M, Faraji Gh, Shapoorgan O, Baniassadi M. Experimental investigation of the effect of temperature in extrusion process of ECAPed nanostructured Titanium. Modares Mechanical Engineering. 2017;17(4):52-60. [Persian] [Link]
2. Nikbakht S, Eftekhari M, Faraji Gh. Study of Microstructure and mechanical properties of pure commercial titanium via combination of Equal channel angular pressing and Extrusion. Modares Mechanical Engineering. 2017;17(1):453-461. [Persian] [Link]
3. Figueiredo RB, Langdon TG. Fabricating ultrafine-grained materials through the application of severe plastic deformation: A review of developments in Brazil. Journal of Materials Research and Technology. 2012;1(1):55-62. [Link] [DOI:10.1016/S2238-7854(12)70010-8]
4. Fata A, Eftekhari M, Faraji GH, Mosavi Mashhadi M. Effects of PTCAP as a severe plastic deformation method on the mechanical and microstructural properties of AZ31 magnesium alloy. Modares Mechanical Engineering. 2018;17(12):409-416. [Persian] [Link]
5. Eftekhari M, Fata A, Faraji Gh, Mosavi Mashhadi M. Evaluation of the effects of a combined severe plastic deformation method on the hot deformation behavior of Mg-3Al-1Zn magnesium alloy. Modares Mechanical Engineering. 2018;18(5):100-107. [Persian] [Link]
6. Tóth LS, Arzaghi M, Fundenberger JJ, Beausir B, Bouaziz O, Arruffat-Massion R. Severe plastic deformation of metals by high-pressure tube twisting. Scripta Materialia. 2009;60(3):175-177. [Link] [DOI:10.1016/j.scriptamat.2008.09.029]
7. Mohebbi MS, Akbarzadeh A. Accumulative spin-bonding (ASB) as a novel SPD process for fabrication of nanostructured tubes. Materials Science and Engineering: A. 2010;528(1):180-188. [Link] [DOI:10.1016/j.msea.2010.08.081]
8. Zangiabadi A, Kazeminezhad M. Development of a novel severe plastic deformation method for tubular materials: Tube Channel Pressing (TCP). Materials Science and Engineering: A. 2011;528(15):5066-5072. [Link] [DOI:10.1016/j.msea.2011.03.012]
9. Faraji G, Mosavi Mashhadi M, Kim HS. Tubular channel angular pressing (TCAP) as a novel severe plastic deformation method for cylindrical tubes. Materials Letters. 2011;65(19-20):3009-3012. [Link] [DOI:10.1016/j.matlet.2011.06.039]
10. Faraji Gh, Babaei A, Mosavi Mashhadi M, Abrinia K. Parallel tubular channel angular pressing (PTCAP) as a new severe plastic deformation method for cylindrical tubes. Materials Letters. 2012;77:82-85. [Link] [DOI:10.1016/j.matlet.2012.03.007]
11. Babaei A, Mosavi Mashhadi M, Jafarzadeh H. Tube cyclic expansion-extrusion (TCEE) as a novel severe plastic deformation method for cylindrical tubes. Journal of Materials Science. 2014;49:3158-3165. [Link] [DOI:10.1007/s10853-014-8017-6]
12. Babaei A, Mashhadi M. Tubular pure copper grain refining by tube cyclic extrusion-compression (TCEC) as a severe plastic deformation technique. Progress in Natural Science: Materials International. 2014;24(6):623-630. [Link] [DOI:10.1016/j.pnsc.2014.10.009]
13. Jafarzadeh H, Abrinia K. Fabrication of ultra-fine grained aluminium tubes by RTES technique. Materials Characterization. 2015;102:1-8. [Link] [DOI:10.1016/j.matchar.2014.12.025]
14. Faraji Gh, Savarabadi MM, inventors. Apparatus and method for fabricating high strength long nanostructured tubes. United States Patent 20180272400. 2018 sep. 27. [Link]
15. Motallebi Savarabadi M, Faraji G, Zalnezhad E. Hydrostatic tube cyclic expansion extrusion (HTCEE) as a new severe plastic deformation method for producing long nanostructured tubes. Journal of Alloys and Compounds. 2019;785:163-168. [Link] [DOI:10.1016/j.jallcom.2019.01.149]
16. Eftekhari M, Faraji G, Nikbakht S, Rashed R, Sharifzadeh R, Hildyard R, et al. Processing and characterization of nanostructured Grade 2 Ti processed by combination of warm isothermal ECAP and extrusion. Materials Science and Engineering: A. 2017;703:551-558. [Link] [DOI:10.1016/j.msea.2017.07.088]
17. Eftekhari M, Fata A, Faraji G, Mashhadi MM. Hot tensile deformation behavior of Mg-Zn-Al magnesium alloy tubes processed by severe plastic deformation. Journal of Alloys and Compounds. 2018;742:442-453. [Link] [DOI:10.1016/j.jallcom.2018.01.246]
18. Fata A, Eftekhari M, Faraji G, Mashhadi MM. Enhanced hot tensile ductility of Mg-3Al-1Zn alloy thin-walled tubes processed via a combined severe plastic deformation. Journal of Materials Engineering and Performance. 2018;27(5):2330-2337. [Link] [DOI:10.1007/s11665-018-3350-6]
19. Hajizadeh K, Eghbali B, Topolski K, Kurzydlowski K. Ultra-fine grained bulk CP-Ti processed by multi-pass ECAP at warm deformation region. Materials Chemistry and Physics. 2014;143(3):1032-1038. [Link] [DOI:10.1016/j.matchemphys.2013.11.001]
20. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zechetbauer MJ, Zhu YT. Producing bulk ultrafine-grained materials by severe plastic deformation. The Journal of The Minerals, Metals & Materials Society (TMS). 2006;58:33-39. [Link] [DOI:10.1007/s11837-006-0213-7]
21. Fang DR, Duan QQ, Zhao NQ, Li JJ, Wu SD, Zhang ZF. Tensile properties and fracture mechanism of Al-Mg alloy subjected to equal channel angular pressing. Materials Science and Engineering: A. 2007;459(1):137-144. [Link] [DOI:10.1016/j.msea.2007.01.062]
22. Tavakkoli V, Afrasiab M, Faraji G, Mashhadi MM. Severe mechanical anisotropy of high-strength ultrafine grained Cu-Zn tubes processed by parallel tubular channel angular pressing (PTCAP). Materials Science and Engineering: A. 2015;625:50-55. [Link] [DOI:10.1016/j.msea.2014.11.085]
23. Phaniraj MP, Prasad MJNV, Chokshi AH. Grain-size distribution effects in plastic flow and failure. Materials Science and Engineering: A. 2007;463(1-2):231-237. [Link] [DOI:10.1016/j.msea.2006.08.116]
24. Jamali SS, Faraji G, Abrinia K. Hydrostatic radial forward tube extrusion as a new plastic deformation method for producing seamless tubes. The International Journal of Advanced Manufacturing Technology. 2017;88:291-301. [Link] [DOI:10.1007/s00170-016-8754-6]
25. Raab GI, Soshnikova EP, Valiev RZ. Influence of temperature and hydrostatic pressure during equal-channel angular pressing on the microstructure of commercial-purity Ti. Materials Science and Engineering: A. 2004;387-389:674-677. [Link] [DOI:10.1016/j.msea.2004.01.137]
26. Wang YM, Ma E. Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Materialia. 2004;52(6):1699-1709. [Link] [DOI:10.1016/j.actamat.2003.12.022]
27. Kocich R, Greger M, Kursa M, Szurman I, Macháčková A. Twist channel angular pressing (TCAP) as a method for increasing the efficiency of SPD. Materials Science and Engineering: A. 2010;527(23):6386-6392. [Link] [DOI:10.1016/j.msea.2010.06.057]
28. Pardis N, Chen C, Ebrahimi R, Toth LS, Gu CF, Beausir B, et al. Microstructure, texture and mechanical properties of cyclic expansion-extrusion deformed pure copper. Materials Science and Engineering: A. 2015;628:423-432. [Link] [DOI:10.1016/j.msea.2015.01.003]
29. Babaei A, Faraji G, Mashhadi MM, Hamdi M. Repetitive forging (RF) using inclined punches as a new bulk severe plastic deformation method. Materials Science and Engineering: A. 2012;558:150-157. [Link] [DOI:10.1016/j.msea.2012.07.103]
30. Edalati K, Imamura K, Kiss T, Horita Z. Equal-channel angular pressing and high-pressure torsion of pure copper, evolution of electrical conductivity and hardness with strain. Materials Transactions. 2012;53(1):123-127. [Link] [DOI:10.2320/matertrans.MD201109]
31. Deng J, Lin Y, Li SS, Chen J, Ding Y. Hot tensile deformation and fracture behaviors of AZ31 magnesium alloy. Materials & Design. 2013;49:209-219. [Link] [DOI:10.1016/j.matdes.2013.01.023]
32. Alawadhi MY, Sabbaghianrad S, Huang Y, Langdon TG. Direct influence of recovery behaviour on mechanical properties in oxygen-free copper processed using different SPD techniques: HPT and ECAP. Journal of Materials Research and Technology. 2017;6(4):369-377. [Link] [DOI:10.1016/j.jmrt.2017.05.005]
33. Lugo N, Llorca N, Cabrera JM, Horita Z. Microstructures and mechanical properties of pure copper deformed severely by equal-channel angular pressing and high pressure torsion. Materials Science and Engineering: A. 2008;477(1):366-371. [Link] [DOI:10.1016/j.msea.2007.05.083]
34. Edalati K, Fujioka T, Horita Z. Microstructure and mechanical properties of pure Cu processed by high-pressure torsion. Materials Science and Engineering: A. 2008;497(1-2):168-173. [Link] [DOI:10.1016/j.msea.2008.06.039]
35. Ranjbar Bahadori S, Dehghani K, Bakhshandeh F. Microstructure, texture and mechanical properties of pure copper processed by ECAP and subsequent cold rolling. Materials Science and Engineering: A. 2013;583:36-42. [Link] [DOI:10.1016/j.msea.2013.06.061]
36. Fattah-alhosseini A, Imantalab O, Mazaheri Y, Keshavarz MK. Microstructural evolution, mechanical properties, and strain hardening behavior of ultrafine grained commercial pure copper during the accumulative roll bonding process. Materials Science and Engineering: A. 2016;650:8-14. [Link] [DOI:10.1016/j.msea.2015.10.043]
37. Ebrahimi M, Djavanroodi F. Experimental and numerical analyses of pure copper during ECFE process as a novel severe plastic deformation method. Progress in Natural Science: Materials International. 2014;24(1):68-74. [Link] [DOI:10.1016/j.pnsc.2014.01.013]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.