1. Elyasi M, Talebi Ghadikolaee H, Hosseinzadeh M. Investigation of dimensional accuracy in forming of metallic bipolar plates with serpentine flow field. International Journal of Advanced Manufacturing Technology. 2018;96(1-4):1045-1060. [
Link] [
DOI:10.1007/s00170-018-1650-5]
2. Dur E, Cora ÖN, Koç M. Effect of manufacturing process sequence on the corrosion resistance characteristics of coated metallic bipolar plates. Journal of Power Sources. 2014;246:788-799. [
Link] [
DOI:10.1016/j.jpowsour.2013.08.036]
3. Belali-Owsia M, Bakhshi-Jooybari M, Hosseinipour SJ, Gorji AH. A new process of forming metallic bipolar plates for PEM fuel cell with pin-type pattern. The International Journal of Advanced Manufacturing Technology. 2015;77(5-8):1281-1293. [
Link] [
DOI:10.1007/s00170-014-6563-3]
4. Taherian R. A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection. Journal of Power Sources. 2014;265:370-390. [
Link] [
DOI:10.1016/j.jpowsour.2014.04.081]
5. Hu Q, Zhang D, Fu H, Huang K. Investigation of stamping process of metallic bipolar plates in PEM fuel cell-Numerical simulation and experiments. International Journal of Hydrogen Energy. 2014;39(25):13770-13776. [
Link] [
DOI:10.1016/j.ijhydene.2014.01.201]
6. Koo JY, Jeon YP, Kang CG. Effect of stamping load variation on deformation behavior of stainless steel thin plate with micro channel. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2013;227(8):1121-1128. [
Link] [
DOI:10.1177/0954405412462673]
7. Kwon HJ, Jeon YP, Kang CG. Effect of progressive forming process and processing variables on the formability of aluminium bipolar plate with microchannel. The International Journal of Advanced Manufacturing Technology. 2013;64(5-8):681-694. [
Link] [
DOI:10.1007/s00170-012-4033-3]
8. Elyasi M, Khatir FA, Hosseinzadeh M. Manufacturing metallic bipolar plate fuel cells through rubber pad forming process. The International Journal of Advanced Manufacturing Technology. 2017;89(9-12):3257-3269. [
Link] [
DOI:10.1007/s00170-016-9297-6]
9. Jin CK, Jeong MG, Kang CG. Fabrication of titanium bipolar plates by rubber forming and performance of single cell using TiN-coated titanium bipolar plates. International Journal of Hydrogen Energy. 2014;39(36):21480-21488. [
Link] [
DOI:10.1016/j.ijhydene.2014.03.013]
10. Palumbo G, Piccininni A. Numerical-experimental investigations on the manufacturing of an aluminium bipolar plate for proton exchange membrane fuel cells by warm hydroforming. The International Journal of Advanced Manufacturing Technology. 2013;69(1-4):731-742. [
Link] [
DOI:10.1007/s00170-013-5047-1]
11. Peng L, Yi P, Lai X. Design and manufacturing of stainless steel bipolar plates for proton exchange membrane fuel cells. International Journal of Hydrogen Energy. 2014;39(36):21127-21153. [
Link] [
DOI:10.1016/j.ijhydene.2014.08.113]
12. Ozturk F, Ece RE, Polat N, Koksal A, Evis Z, Polat A. Mechanical and microstructural evaluations of hot formed titanium sheets by electrical resistance heating process. Materials Science and Engineering: A. 2013;578:207-214. [
Link] [
DOI:10.1016/j.msea.2013.04.079]
13. Adamus J. Stamping of titanium sheets. In Key Engineering Materials. Key Engineering Materials. 2009;410-411:279-288. [
Link] [
DOI:10.4028/www.scientific.net/KEM.410-411.279]
14. Savan A, Pflüger E, Voumard P, Schröer A, Simmonds M. Modern solid lubrication: recent developments and applications of MoS2. Lubrication Science. 2000;12(2):185-203. [
Link] [
DOI:10.1002/ls.3010120206]
15. Liu Y, Zhu Z, Wang Z, Zhu B, Wang Y, Zhang Y. Formability and lubrication of a B-pillar in hot stamping with 6061 and 7075 aluminum alloy sheets. Procedia Engineering. 2017;207:723-728. [
Link] [
DOI:10.1016/j.proeng.2017.10.819]
16. Barimani Varandi A, Hosseinipour SJ. Investigation of process parameters in production of cylindrical parts by gradient warm deep drawing. Modares Mechanical Engineering. 2014;14(10):187-194. [Persian] [
Link]
17. Modanloo V, Gorji A, Bakhshi-Jooybari M. A comprehensive thinning analysis for hydrodynamic deep drawing assisted by radial pressure. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering. 2019;43(3):487-494. [
Link] [
DOI:10.1007/s40997-018-0221-6]
18. Chen FK, Chiu KH. Stamping formability of pure titanium sheets. Journal of materials processing technology. 2005;170(1-2):181-186. [
Link] [
DOI:10.1016/j.jmatprotec.2005.05.004]
19. Modanloo V, Doniavi A, Hasanzadeh R. Application of multi criteria decision making methods to select sheet hydroforming process parameters. Decision Science Letters. 2016;5(3):349-360. [
Link] [
DOI:10.5267/j.dsl.2016.2.005]
20. Luo J, Li M, Yu W, Li H. The variation of strain rate sensitivity exponent and strain hardening exponent in isothermal compression of Ti-6Al-4V alloy. Materials & Design. 2010;31(2):741-748. [
Link] [
DOI:10.1016/j.matdes.2009.09.055]
21. Tsao LC, Wu HY, Leong JC, Fang CJ. Flow stress behavior of commercial pure titanium sheet during warm tensile deformation. Materials & Design. 2012; 34:179-184. [
Link] [
DOI:10.1016/j.matdes.2011.07.060]
22. Chamos AN, Labeas GN, Setsika D. Tensile behavior and formability evaluation of titanium-40 material based on the forming limit diagram approach. Journal of Materials Engineering and Performance. 2013;22(8):2253-2260. [
Link] [
DOI:10.1007/s11665-013-0495-1]
23. Mahabunphachai S, Cora ÖN, Koç M. Effect of manufacturing processes on formability and surface topography of proton exchange membrane fuel cell metallic bipolar plates. Journal of Power Sources. 2010;195(16):5269-5277. [
Link] [
DOI:10.1016/j.jpowsour.2010.03.018]