Volume 20, Issue 3 (March 2020)                   Modares Mechanical Engineering 2020, 20(3): 701-708 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Azimi S, Momeni V, Alaei M, Mirzaei A, Rezvani Nasab M, Ramezani Nezhad M et al . Effect of Clay Nanoparticles on Increasing the Lifetime of Glass/Epoxy Composites under Thermal and Humidity Conditions (Hydrothermal). Modares Mechanical Engineering 2020; 20 (3) :701-708
URL: http://mme.modares.ac.ir/article-15-32416-en.html
1- Composite Materials Department, Materials & Manufacturing Technology Faculty, Malek Ashtar University of Technology, Tehran, Iran
2- Composite Materials Department, Materials & Manufacturing Technology Faculty, Malek Ashtar University of Technology, Tehran, Iran , mhallaee@mut.ac.ir
Abstract:   (4834 Views)
In this research, the effect of adding clay Nanoparticles on increasing the lifetime of glass/epoxy composites under hydrothermal conditions has been investigated. For this purpose, samples containing 3 Vol.% of clay Nanoparticles and samples without clay Nanoparticles in resin epoxy has been manufactured for the fabrication of specimens of the tensile test using hand lay-up and vacuum bag. The specimens were placed under the hydrothermal condition of 90% humidity and 75 °C temperature for 500 hours in the incubator and were tested for tensile properties. The results show that addition of clay Nanoparticles decreases the strength of the composite by 21.39% in the newly produced samples while in a long time, these particles slow down the process of composite degradation, so that in the same environmental conditions, the strength of specimens containing clay Nanoparticles is 9% higher than the specimens without clay Nanoparticles.
Full-Text [PDF 978 kb]   (1309 Downloads)    
Article Type: Original Research | Subject: Composites
Received: 2019/04/28 | Accepted: 2019/07/9 | Published: 2020/03/1

1. Sell CG, McKenna GB. Influence of physical ageing on the yield response of model DGEBA/poly (propylene oxide) epoxy glasses. Polymer. 1992;33(10):2103-2113. [Link] [DOI:10.1016/0032-3861(92)90876-X]
2. Leveque D, Schieffer A, Mavel A, Maire JF. Analysis of how thermal aging affects the long-term mechanical behavior and strength of polymer-matrix composites. Composites Science and Technology. 2005;65(3-4):395-401. [Link] [DOI:10.1016/j.compscitech.2004.09.016]
3. Kawakami H, Souda K, Nanzai Y. Relaxation phenomenon in epoxy glass aged under post‐yield strain. Polymer Engineering & Science. 2006;46(5):630-634. [Link] [DOI:10.1002/pen.20493]
4. Hu HW. Physical aging in long term creep of polymeric composite laminates. Journal of Mechanics. 2007;23(3):245-252. [Link] [DOI:10.1017/S1727719100001283]
5. Shi X, Fernando BMD, Croll SG. Concurrent physical aging and degradation of crosslinked coating systems in accelerated weathering. Journal of Coatings Technology and Research. 2008;5(3):299-309. [Link] [DOI:10.1007/s11998-008-9081-0]
6. Ozcelik O, Aktas L, Altan MC. Thermo-oxidative degradation of graphite/epoxy composite laminates: Modeling and long-term predictions. Express Polymer Letters. 2009;3(12):797-803. [Link] [DOI:10.3144/expresspolymlett.2009.98]
7. Jiang X, Kolstein H, Bijlaard FS. Moisture diffusion and hygrothermal aging in pultruded fibre reinforced polymer composites of bridge decks. Materials & Design. 2012;37:304-312. [Link] [DOI:10.1016/j.matdes.2012.01.017]
8. Alessi S, Pitarresi G, Spadaro G. Effect of hydrothermal ageing on the thermal and delamination fracture behaviour of CFRP composites. Composites Part B: Engineering. 2014;67:145-153. [Link] [DOI:10.1016/j.compositesb.2014.06.006]
9. Jiang X, Kolstein H, Bijlaard F, Qiang X. Effects of hygrothermal aging on glass-fibre reinforced polymer laminates and adhesive of FRP composite bridge: Moisture diffusion characteristics. Composites Part A: Applied Science and Manufacturing. 2014;57:49-58. [Link] [DOI:10.1016/j.compositesa.2013.11.002]
10. Fan W, Li JL, Guo D. Effect of thermo-oxidative aging on three-dimensional and four-directional braided carbon fiber/epoxy composite. Journal of Composite Materials. 2015;49(25):3189-3202. [Link] [DOI:10.1177/0021998314561067]
11. Jiang X, Song J, Qiang X, Kolstein H, Bijlaard F. Moisture absorption/desorption effects on flexural property of glass-fiber-reinforced polyester laminates: Three-point bending test and coupled hygro-mechanical finite element analysis. Polymers. 2016;8(8):290. [Link] [DOI:10.3390/polym8080290]
12. Sugiman S, Putra IK, Setyawan PD. Effects of the media and ageing condition on the tensile properties and fracture toughness of epoxy resin. Polymer Degradation and Stability. 2016;134:311-321. [Link] [DOI:10.1016/j.polymdegradstab.2016.11.006]
13. Di Filippo M, Alessi S, Pitarresi G, Sabatino MA, Zucchelli A, Dispenza C. Hydrothermal aging of carbon reinforced epoxy laminates with nanofibrous mats as toughening interlayers. Polymer Degradation and Stability. 2016;126:188-195. [Link] [DOI:10.1016/j.polymdegradstab.2016.02.011]
14. Li Y, Xue B. Hydrothermal ageing mechanisms of unidirectional flax fabric reinforced epoxy composites. Polymer degradation and stability. 2016;126:144-158. [Link] [DOI:10.1016/j.polymdegradstab.2016.02.004]
15. Shin KB, Kim CG, Hong CS. Correlation of accelerated aging test to natural aging test on graphite-epoxy composite materials. Journal of Reinforced Plastics and Composites. 2003;22(9):849-861. [Link] [DOI:10.1177/0731684403022009005]
16. Cysne Barbosa AP, Fulco AP, Guerra ES, Arakaki FK, Tosatto M, Costa MC, et al. Accelerated aging effects on carbon fiber/epoxy composites. Composites Part B: Engineering. 2017;110:298-306. [Link] [DOI:10.1016/j.compositesb.2016.11.004]
17. Shamsuddoha M, Djukic LP, Islam MM, Aravinthan T, Manalo A. Mechanical and thermal properties of glass fiber-vinyl ester resin composite for pipeline repair exposed to hot-wet conditioning. Journal of Composite Materials. 2017;51(11):1605-1617. [Link] [DOI:10.1177/0021998316661869]
18. Chang LN, Chow WS. Accelerated weathering on glass fiber/epoxy/organo-montmorillonite nanocomposites. Journal of Composite Materials. 2010;44(12):1421-1434. [Link] [DOI:10.1177/0021998309360944]
19. Sunil Kumar S, Londe NV, Saviraj AS, Kannanth V. Effect of accelerated ageing on hardness and flexural behaviour of woven fabric glass/carbon hybrid epoxy composites. Materials Today: Proceedings. 2017;4(10):10751-10756. [Link] [DOI:10.1016/j.matpr.2017.08.023]
20. Kwon DJ, Shin PS, Kim JH, Baek YM, Park HS, Lawrence DeVries K, et al. Interfacial properties and thermal aging of glass fiber/epoxy composites reinforced with SiC and SiO2 nanoparticles. Composites Part B: Engineering. 2017;130:46-53. [Link] [DOI:10.1016/j.compositesb.2017.07.045]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.