1. Dhanawade A, Upadhyai R, Rouniyar A, Kumar S. Experimental study on abrasive water jet machining of PZT ceramic. Journal of Physics: Conference Series. 2017;870:012019. [
Link] [
DOI:10.1088/1742-6596/870/1/012019]
2. Yue Z, Huang C, Zhu H, Wang J, Yao P, Liu ZW. Optimization of machining parameters in the abrasive waterjet turning of alumina ceramic based on the response surface methodology. The International Journal of Advanced Manufacturing Technology. 2014;71:2107-2114. [
Link] [
DOI:10.1007/s00170-014-5624-y]
3. Chithirai Pon Selvan M, Mohana Sundara Raju N. Abrasive waterjet cutting surfaces of ceramics - an experimental investigation. International Journal of Advanced Scientific Engineering and Technologies Research. 2012;1(3):52-59. [
Link]
4. Xu S, Wang J. A study of abrasive waterjet cutting of alumina ceramics with controlled nozzle oscillation. The International Journal of Advanced Manufacturing Technology. 2005;27:693-702. [
Link] [
DOI:10.1007/s00170-004-2256-7]
5. Murugan M, Gebremariam MA, Hamedon Z, Azhari A. Performance analysis of abrasive waterjet machining process at low pressure. IOP Conference Series: Materials Science and Engineering. 2018;319:012051. [
Link] [
DOI:10.1088/1757-899X/319/1/012051]
6. Nagendra Prasad K, John Basha D, Varaprasad KC. Experimental investigation and analysis of process parameters in abrasive jet machining of Ti-6Al-4V alloy using taguchi method. Materials Today: Proceedings. 2017;4(10):10894-10903. [
Link] [
DOI:10.1016/j.matpr.2017.08.044]
7. Kumaran ST, Ko TJ, Uthayakumar M, Islam MM. Prediction of surface roughness in abrasive water jet machining of CFRP composites using regression analysis. Journal of Alloys and Compounds. 2017;724:1037-1045. [
Link] [
DOI:10.1016/j.jallcom.2017.07.108]
8. Li H, Wang J. An experimental study of abrasive waterjet machining of Ti-6Al-4V. International Journal of Advanced Manufacturing Technology. 2015;81:361-369. [
Link] [
DOI:10.1007/s00170-015-7245-5]
9. Amirabadi H, Foorginejad A, Ahmadi Mojaveri M. Cutting of Ti-6Al 4V titanium alloy using abrasive water jet and multiobjective optimization of geometry features. Modares Mechanical Engineering. 2015;14(16):67-75. [Persian] [
Link]
10. Bubo MN, Muthukrishnan N. Investigation on surface roughness in abrasive water-jet machining by response surface method. Materials and Manufacturing Processes. 2014;29(11-12):1422-1428. [
Link] [
DOI:10.1080/10426914.2014.952020]
11. Zohoor M, Zohourkari I, Cacciatore F, Annoni M. Influence of machining parameters on part geometrical error in abrasive waterjet offset-mode turning. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2015;229(12):2125-2133. [
Link] [
DOI:10.1177/0954405414548462]
12. Filip AC, Vasiloni MA, Mihail LA. Experimental research on the machinability of Hardox steel by abrasive waterjet cutting. MATEC Web Conferences. 2017;94:1-8. [
Link] [
DOI:10.1051/matecconf/20179403003]
13. Löschner P, Jarosz K, Niesłony P. Investigation of the effect of cutting speed on surface quality in abrasive water jet cutting of 316L stainless steel. Procedia Engineering. 2016;149:276-282. [
Link] [
DOI:10.1016/j.proeng.2016.06.667]
14. Sunkara JK, Charan Teja P, Eshwariaha B, Harshvardhan Reddy K. Experimental control of kerf width taper during abrasive water jet machining. FME Transactions. 2019;47:585-590. [
Link] [
DOI:10.5937/fmet1903585S]
15. Nguyen T, Wang J. A review on the erosion mechanisms in abrasive waterjet micromachining of brittle materials. International Journal of Extreme Manufacturing. 2019;1:012006. [
Link] [
DOI:10.1088/2631-7990/ab1028]
16. Doreswamy D, Shivamurthy B, Anjaiah D, Sharma NY. An investigation of abrasive water jet machining on graphite/glass/epoxy composite. International Journal of Manufacturing Engineering. 2015;2015:Article ID 627218. [
Link] [
DOI:10.1155/2015/627218]
17. Jiang S, Xia Y, Popescu R, Mihai C, Tan K. Cutting capability equation of abrasive suspension jet. WJTA American Waterjet Conference. Unknown Date, Unknown Location. Unknown Publisher; 2005. [
Link]
18. Liu D, Huang C, Wang J, Zhu H, Yao P, Liu ZW. Modeling and optimization of operating parameters for abrasive waterjet turning alumina ceramics using response surface methodology combined with Box-Behnken design. Ceramics International. 2014;40(6):7899-7908. [
Link] [
DOI:10.1016/j.ceramint.2013.12.137]
19. Nair A, Kumanan S. Multi-performance optimization of abrasive water jet machining of Inconel 617 using WPCA. Materials and Manufacturing Processes. 2017;32(6):693-699. [
Link] [
DOI:10.1080/10426914.2016.1244844]
20. Liu D, Zhu H, Huang C, Wang J, Yao P. Prediction model of depth of penetration for alumina ceramics turned by abrasive waterjet-finite element method and experimental study. International Journal of Advanced Manufacturing Technology. 2016;87:2673-2682. [
Link] [
DOI:10.1007/s00170-016-8600-x]
21. Haj Mohammad Jafar R, Spelt JK, Papini M. Numerical simulation of surface roughness and erosion rate of abrasive jet micro-machined channels. Wear. 2013;303(1-2):302-312. [
Link] [
DOI:10.1016/j.wear.2013.03.021]