Volume 20, Issue 5 (May 2020)                   Modares Mechanical Engineering 2020, 20(5): 1171-1185 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sabbagh-Yazdi S, Jamshidi M. Experimental Investigation of One-Loop Galloping in Power Transmission Conductors and the Effect of Local Covering to it's Alleviate. Modares Mechanical Engineering 2020; 20 (5) :1171-1185
URL: http://mme.modares.ac.ir/article-15-33271-en.html
1- Civil Engineering Faculty, K.N.Toosi University of Technology, Tehran, Iran
2- Civil Engineering Faculty, K.N.Toosi University of Technology, Tehran, Iran , mjamshidi@dena.kntu.ac.ir
Abstract:   (1791 Views)
Galloping is a large-amplitude, low frequency, wind-induced oscillation of overhead power transmission lines with one or multi loops of standing waves per span which occurs due to wind flow. Based on the field data, numerous galloping oscillations occurs in the form of one loop oscillation which whereby high dynamic loads are imported to the support structures. In this research, the results of wind tunnel tests have been performed on a two-span distorted scale model with an ice-accreted cross-section under uniform and non-uniform aerodynamic loadings. Dead-end and suspension insulators have been applied to the support points. Then, based on identifying the most critical state of the lines oscillation, a solution has been proposed based on increasing their bending strength through the application of hardening local covering. The results showed that the most critical state of the cables oscillation in the galloping is related to the one-loop oscillation, which occurs as a result of interactions between the cables of adjacent spans under uneven aerodynamic loading and the use of suspended insulators, and the dynamic forces applied to the supports are about 20% more than the case when the cables oscillate due to the dead-end connections attached to the support structure. Also, applying the local covering with a length of 20% of cable span leads to a 27% reduction in dynamic support reaction of one-loop galloping.
Full-Text [PDF 1748 kb]   (1447 Downloads)    
Article Type: Original Research | Subject: Dynamics
Received: 2019/06/26 | Accepted: 2019/10/14 | Published: 2020/05/9

References
1. Keutgen R, Lilien JL. A new damper to solve galloping on bundled lines. Theoretical background, laboratory and field results. IEEE Transactions on Power Delivery. 1998;13(1):260-265. [Link] [DOI:10.1109/61.660887]
2. Lilien JL, Havard DG. Galloping data base on single and bundle conductors prediction of maximum amplitudes. IEEE Transactions on Power Delivery. 2000;15(2):670-674. [Link] [DOI:10.1109/61.853003]
3. Kim JW, Sohn JH. Galloping simulation of the power transmission line under the fluctuating wind. International Journal of Precision Engineering and Manufacturing. 2018;19(9):1393-1398. [Link] [DOI:10.1007/s12541-018-0164-2]
4. Byun GS, Egbert RI. Two-degree-of-freedom analysis of power line galloping by describing function methods. Electric Power Systems Research. 1991;21(3):187-193. [Link] [DOI:10.1016/0378-7796(91)90044-N]
5. Riaz H, Biswas SK, Ahmed NU. Stochastic modelling and stabilization of galloping transmission lines. Electric Power Systems Research. 1986;10(2):137-143. [Link] [DOI:10.1016/0378-7796(86)90006-4]
6. Hao SY, Zhou K, Chen ZG, ZhangQC. Finite element analysis on dynamic tension of quad-bundle conductor of transmission line galloping. Applied Mechanics and Materials. 2011;48-49:523-526. [Link] [DOI:10.4028/www.scientific.net/AMM.48-49.523]
7. Desai YM, Yu P, Popplewell N, Shah AH. Finite element modelling of transmission line galloping. Computers & Structures. 1995;57(3):407-420. [Link] [DOI:10.1016/0045-7949(94)00630-L]
8. Mc Comber P, Paradis A. A cable galloping model for thin ice accretions. Atmospheric Research. 1998;46(1):13-25. [Link] [DOI:10.1016/S0169-8095(97)00047-1]
9. Luongo A, PiccardoG. Non-linear galloping of sagged cables in 1:2 internal resonance. Journal of Sound and Vibration. 1998;214(5):915-940. [Link] [DOI:10.1006/jsvi.1998.1583]
10. Wang D, Li J, Xie Q. Analytical model for dynamic tension in overhead power transmission lines subject to strong wind. Advances in Structural Engineering. 2011;14(3):445-456. [Link] [DOI:10.1260/1369-4332.14.3.445]
11. Kazakevych MI, Vasylenko OH. Analytical solution for galloping oscillations. Journal of Engineering Mechanics-ASCE. 1996;122(6):555-558. [Link] [DOI:10.1061/(ASCE)0733-9399(1996)122:6(555)]
12. Luongo A, Zullia D, Piccardo G. Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables. Journal of Sound and Vibration. 2008;315(3):375-393. [Link] [DOI:10.1016/j.jsv.2008.03.067]
13. Rawlins CB. Analysis of conductor galloping field observations - single conductors. IEEE Transactions on Power Apparatus and Systems. 1981;100(8):3744-3753. [Link] [DOI:10.1109/TPAS.1981.317017]
14. Van Dyke P, Laneville A. Galloping of a single conductor covered with a D-section on a high-voltage overhead test line. Journal of Wind Engineering and Industrial Aerodynamics. 2008;96(6-7):1141-1151. [Link] [DOI:10.1016/j.jweia.2007.06.036]
15. Paluch MJ, Cappellari TTO, Riera JD. Experimental and numerical assessment of EPS wind action on long span transmission line conductors. Journal of Wind Engineering and Industrial Aerodynamics. 2007;95(1):473-492. [Link] [DOI:10.1016/j.jweia.2006.09.003]
16. Gurung CB, Yamaguchi H, Yukino T. Identification of large amplitude wind-induced vibration of ice-accreted transmission lines based on field observed data. Engineering Structures. 2002;24(2):179-188. [Link] [DOI:10.1016/S0141-0296(01)00089-X]
17. Hardy C, Van Dyke P. Field observations on wind induced conductor motions. Journal of Fluids and Structures. 1995;9(1):43-60. [Link] [DOI:10.1006/jfls.1995.1003]
18. Tsui YT. Dynamic behavior of a Pylône à Chaînette line Part II. Experimental Studies. Electric Power Systems Research. 1978;1(4):315-332. [Link] [DOI:10.1016/0378-7796(78)90018-4]
19. Carreira AJ. Controlling conductor motion with interphase spacers in regions of contamination. IEEE Electrical Insulation Magazine. 2008;24(6):35-42. [Link] [DOI:10.1109/MEI.2008.4665349]
20. Rowbottom MD. The effect of an added mass on the galloping of an overhead line. Journal of Sound and Vibration. 1979;63(2):310-313. [Link] [DOI:10.1016/0022-460X(79)90891-5]
21. Denhartog JP. Transmission line vibration due to sleet. Electrical Engineering. 1932;51(6):413-413. [Link] [DOI:10.1109/EE.1932.6429869]
22. Ratkowski JJ. Experiments with galloping spans. IEEE Transactions on Power Apparatus and Systems. 1963;82(68):661-669. [Link] [DOI:10.1109/TPAS.1963.291382]
23. Nigol O, Buchan PG. Conductor galloping Part I - Den Hartog mechanism. IEEE Transactions on Power Apparatus and Systems. 1981;100(2):699-707. [Link] [DOI:10.1109/TPAS.1981.316921]
24. Nigol O, Buchan PG. Conductor galloping-Part II torsional mechanism. IEEE Transactions on Power Apparatus and Systems. 1981;100(2):708-720. [Link] [DOI:10.1109/TPAS.1981.316922]
25. Lilien JL, Van Dyke P, Asselin JM, Farzaneh M, Halsan K, Havard D, et al. State of the art of conductor galloping. Technical Brochure. 2007;322:21-25. [Link]
26. Loredo-Souza AM, Davenport AG. A novel approach for wind tunnel modelling of transmission lines. Journal of Wind Engineering and Industrial Aerodynamics. 2001;89(11-12):1017-1029. [Link] [DOI:10.1016/S0167-6105(01)00096-4]
27. Alonso G, Meseguer J, Perez-Grande I. Galloping instabilities of two-dimensional triangular cross-section bodies. Experiments in Fluids. 2005;38:789-795. [Link] [DOI:10.1007/s00348-005-0974-8]
28. Chabart O, Lilien JL. Galloping of electrical lines in wind tunnel facilities. Journal of Wind Engineering and Industrial Aerodynamics. 1998;74-76:967-976. [Link] [DOI:10.1016/S0167-6105(98)00088-9]
29. Sarkar PP, Chowdhury AG. Gardner TB. A novel elastic suspension system for wind tunnel section model studies. Journal of Wind Engineering and Industrial Aerodynamics. 2004;92(1):23-40. [Link] [DOI:10.1016/j.jweia.2003.09.036]
30. Van Oudheusden BW. On the quasi-steady analysis of one-degree-of-freedom galloping with combined translational and rotational effects. Nonlinear Dynamics. 1995;8:435-451. [Link] [DOI:10.1007/BF00045707]
31. Baenziger MA, James WD, Wouters B, Li L. Dynamic loads on transmission line structures due to galloping conductors. IEEE Transactions on Power Delivery. 1994;9(1):40-49. [Link] [DOI:10.1109/61.277678]
32. Bartoli G, Cluni F, Gusella V, Procino L. Dynamics of cable under wind action: Wind tunnel experimental analysis. Journal of Wind Engineering and Industrial Aerodynamics. 2006;94(5):259-273. [Link] [DOI:10.1016/j.jweia.2006.01.002]
33. Mukhopadhyay V. The galloping oscillation of a cable of square section suspended in a smooth wind flow. Journal of Wind Engineering and Industrial Aerodynamics. 1979;5(1-2):35-51. [Link] [DOI:10.1016/0167-6105(79)90023-0]
34. Wong CJ, Miller MD. Guidelines for electrical transmission line structural loading (asce manuals and reports on engineering practice). 3rd Edition. Virginia: American Society of Civil Engineers; 2009. [Link] [DOI:10.1061/9780784410356]
35. Irvine HM, Caughey TK. The linear theory of free vibrations of a suspended cable. Proceeding of the royal society. 1974;341(1626):299-315. [Link] [DOI:10.1098/rspa.1974.0189]
36. Tsui YT. Modern developments in cable dynamics. Electric Power Systems Research. 1990;18(2):91-98. [Link] [DOI:10.1016/0378-7796(90)90011-Q]
37. Ratkowski JJ. Factors relative to high-amplitude galloping. IEEE Transactions on Power Apparatus and Systems. 1968;87(6):1385-1396. [Link] [DOI:10.1109/TPAS.1968.292105]
38. Chadha J, Jaster W. Influence of turbulence on the galloping instability of iced conductors. IEEE Transactions on Power Apparatus and Systems. 1975;94(5):1489-1499. [Link] [DOI:10.1109/T-PAS.1975.31991]
39. Sayigh, A. Comprehensive renewable energy. 1st Edition. Amsterdam: Elsevier; 2012. [Link]
40. Gonen T. Electric power transmission system engineering, analysis and design. 1st Edition. Hoboken, New Jersey: John Wiley & Sons; 1988. [Link]
41. Barlow JB, Rae WH, Pope A. Low-Speed Wind Tunnel Testing. 3rd Edition. Hoboken, New Jersey: John Wiley & Sons; 1999. [Link]
42. Karthick SK, Jagadeesh G, Reddy KPJ. Visualization of Supersonic Free and Confined Jet using Planar Laser Mie Scattering Technique. Journal of the Indian Institute of Science. 2016;96(1):29-45. [Link]
43. Mueller J. A numerical and experimental evaluation of open jet wind tunnel interferences using the DrivAer reference model. SAE International Journal of Passenger Cars - Mechanical Systems. 2016;9(5):657-679. [Link] [DOI:10.4271/2016-01-1597]
44. Sulaiman Z. Effect of open-jet shear layers on aeroacoustic wind tunnel measurements [Dissertation]. South Holland: Delft University of Technology; 2011. [Link]
45. Le HHT, Nguyen CC, Le DK, Bui ND, Nguyen NH. Integrated design process for subsonic open circuit wind tunnel from empirical studies to CFD simulation. International Conference on Advanced Technologies for Communications. Vietnam: IEEE; 2015. [Link] [DOI:10.1109/ATC.2015.7388426]
46. Sitek MA, Lottes SA, Bojanowski C. Air flow modeling in the wind tunnel of the FHWA aerodynamics laboratory at turner-fairbank highway research center [Technical Report]. Lemont, United States: ARGONNE National Laboratory; 2017. [Link] [DOI:10.2172/1401969]
47. Schlichting H. Boundary layer theory. 7th Edition. United States: McGraw-Hill;1999. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.