Volume 20, Issue 8 (August 2020)                   Modares Mechanical Engineering 2020, 20(8): 2087-2099 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gholipour H, Biglari F. Experimental Study and Numerical Simulation of Ductile Fracture on In-Situ Tensile Specimens Using GTN Micromechanical Damage Model. Modares Mechanical Engineering 2020; 20 (8) :2087-2099
URL: http://mme.modares.ac.ir/article-15-34313-en.html
1- Manufacturing and Production Department, Mechanical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
2- Manufacturing and Production Department, Mechanical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran , biglari@aut.ac.ir
Abstract:   (1935 Views)
The present study is devoted to experimental and numerical investigation of in-situ tensile tests to recognize the mechanisms of ductile fracture under different stress states. The GTN model, which is a micromechanical based damage model, has used for numerical simulations. The parameters related to this model for St12 steel were identified by response surface method (RSM) through minimizing the difference between numerical and experimental results of the tensile test on a standard specimen. The void related parameters of GTN model were determined 0.00107, 0.00716, 0.01, and 0.15 for ff, fc, fN, f0, respectively. After calibrating the damage model for the studied material, the tensile tests were carried out on the in-situ specimens with different geometries. The fractographic analysis was performed to identify the ductile fracture under a wide range of stress states and two failure mechanisms were observed. The calibrated damage model was applied to FE simulations of in-situ tensile specimens for numerical study of the experimentally observed fracture phenomenon. The extracted numerical results showed a good agreement with experimental observations comparing load-displacement plots with a margin of error within 5%. The location of fracture initiation, crack growth orientation, and the displacement at fracture zone in numerical studies also showed close correspondence with experiments.
Full-Text [PDF 1334 kb]   (1070 Downloads)    
Article Type: Original Research | Subject: Damage Mechanics
Received: 2019/06/29 | Accepted: 2020/05/19 | Published: 2020/08/15

References
1. Lemaitre J. A continuous damage mechanics model for ductile fracture. Journal of Engineering Materials and Technology. 1985;107(1):83-89. [Link] [DOI:10.1115/1.3225775]
2. McClintock FA. A criterion for ductile fracture by the growth of holes. Journal of Applied Mechanics. 1968;35(2):363-371. [Link] [DOI:10.1115/1.3601204]
3. Rice JR, Tracey DM. On the ductile enlargement of voids in triaxial stress fields. Journal of the Mechanics and Physics of Solids. 1969;17(3):201-217. [Link] [DOI:10.1016/0022-5096(69)90033-7]
4. Hancock JW, Mackenzie AC. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. Journal of the Mechanics and Physics of Solids. 1976;24(2-3):147-160. [Link] [DOI:10.1016/0022-5096(76)90024-7]
5. Gurson AL. Continuum theory of ductile rupture by void nucleation and growth: part I-Yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology. 1977;99(1):2-15. [Link] [DOI:10.1115/1.3443401]
6. Chu CC, Needleman A. Void nucleation effects in biaxially stretched sheets. Journal of Engineering Materials and Technology. 1980;102(3):249-256. [Link] [DOI:10.1115/1.3224807]
7. Tvergaard V. Influence of voids on shear band instabilities under plane strain conditions. International Journal of Fracture. 1981;17(4):389-407. [Link] [DOI:10.1007/BF00036191]
8. Tvergaard V. Influence of void nucleation on ductile shear fracture at a free surface. Journal of the Mechanics and Physics of Solids. 1982;30(6):399-425. [Link] [DOI:10.1016/0022-5096(82)90025-4]
9. Gologanu M, Leblond J-B, Devaux J. Approximate models for ductile metals containing non-spherical voids-case of axisymmetric prolate ellipsoidal cavities. Journal of the Mechanics and Physics of Solids. 1993;41(11):1723-1754. [Link] [DOI:10.1016/0022-5096(93)90029-F]
10. Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar. Acta Metallurgica. 1984;32(1):157-169. [Link] [DOI:10.1016/0001-6160(84)90213-X]
11. Benseddiq N, Imad A. A ductile fracture analysis using a local damage model. International Journal of Pressure Vessels and Piping. 2008;85(4):219-227. [Link] [DOI:10.1016/j.ijpvp.2007.09.003]
12. Butcher C, Chen Z, Bardelcik A, Worswick M. Damage-based finite-element modeling of tube hydroforming. International Journal of Fracture. 2009;155(1):55-65. [Link] [DOI:10.1007/s10704-009-9323-x]
13. Uthaisangsuk V, Prahl U, Bleck W. Modelling of damage and failure in multiphase high strength DP and TRIP steels. Engineering Fracture Mechanics. 2011;78(3):469-486. [Link] [DOI:10.1016/j.engfracmech.2010.08.017]
14. Abbasi M, Bagheri B, Ketabchi M, Haghshenas DF. Application of response surface methodology to drive GTN model parameters and determine the FLD of tailor welded blank. Computational Materials Science. 2012;53(1):368-376. [Link] [DOI:10.1016/j.commatsci.2011.08.020]
15. Sirinakorn T, Wongwises S, Uthaisangsuk V. A study of local deformation and damage of dual phase steel. Materials & Design. 2014;64:729-742. [Link] [DOI:10.1016/j.matdes.2014.08.009]
16. Wang S, Chen Z, Dong C. Tearing failure of ultra-thin sheet-metal involving size effect in blanking process: Analysis based on modified GTN model. International Journal of Mechanical Sciences. 2017;133:288-302. [Link] [DOI:10.1016/j.ijmecsci.2017.08.028]
17. Safdarian R. Investigation of tube fracture in the rotary draw bending process using experimental and numerical methods. International Journal of Material Forming. 2019;1-24. [Link] [DOI:10.1007/s12289-019-01484-5]
18. Swift HW. Plastic instability under plane stress. Journal of the Mechanics and Physics of Solids. 1952;1(1):1-18. [Link] [DOI:10.1016/0022-5096(52)90002-1]
19. Hambli R. Comparison between Lemaitre and Gurson damage models in crack growth simulation during blanking process. International Journal of Mechanical Sciences. 2001;43(12):2769-2790. [Link] [DOI:10.1016/S0020-7403(01)00070-4]
20. Schmitt W, Sun DZ, Blauel JG. Damage mechanics analysis (Gurson model) and experimental verification of the behaviour of a crack in a weld-cladded component. Nuclear Engineering and Design. 1997;174(3):237-246. [Link] [DOI:10.1016/S0029-5493(97)00135-0]
21. Rachik M, Roelandt JM, Maillard A. Some phenomenological and computational aspects of sheet metal blanking simulation. Journal of Materials Processing Technology. 2002;128(1-3):256-265. [Link] [DOI:10.1016/S0924-0136(02)00460-0]
22. Springmann M, Kuna M. Identification of material parameters of the Gurson-Tvergaard-Needleman model by combined experimental and numerical techniques. Computational Materials Science. 2005;32(3-4):544-552. [Link] [DOI:10.1016/j.commatsci.2004.09.010]
23. Lemiale V, Chambert J, Picart P. Description of numerical techniques with the aim of predicting the sheet metal blanking process by FEM simulation. Journal of Materials Processing Technology. 2009;209(5):2723-2734. [Link] [DOI:10.1016/j.jmatprotec.2008.06.019]
24. Marouani H, Ben Ismail A, Hug E, Rachik M. Numerical investigations on sheet metal blanking with high speed deformation. Materials & Design. 2009;30(9):3566-3571. [Link] [DOI:10.1016/j.matdes.2009.02.028]
25. Kossakowski PG. Simulation of ductile fracture of S235JR steel using computational cells with microstructurally-based length scales. Journal of Theoretical and Applied Mechanics. 2012;50(2):589-607. [Link]
26. Kiran R, Khandelwal K. Gurson model parameters for ductile fracture simulation in ASTM A992 steels. Fatigue & Fracture of Engineering Materials & Structures. 2014;37(2):171-183. [Link] [DOI:10.1111/ffe.12097]
27. Achouri M, Germain G, Dal Santo P, Saidane D. Numerical integration of an advanced Gurson model for shear loading: Application to the blanking process. Computational Materials Science. 2013;72:62-67. [Link] [DOI:10.1016/j.commatsci.2013.01.035]
28. Achouri M, Germain G, Dal Santo P, Saidane D. Experimental characterization and numerical modeling of micromechanical damage under different stress states. Materials & Design. 2013;50:207-222. [Link] [DOI:10.1016/j.matdes.2013.02.075]
29. Achouri M, Germain G, Dal Santo P, Saidane D. Experimental and numerical analysis of micromechanical damage in the punching process for high-strength low-alloy steels. Materials & Design. 2014;56:657-670. [Link] [DOI:10.1016/j.matdes.2013.11.016]
30. Zhou J, Gao X, Sobotka JC, Webler BA, Cockeram BV. On the extension of the Gurson-type porous plasticity models for prediction of ductile fracture under shear-dominated conditions. International Journal of Solids and Structures. 2014;51(18):3273-3291. [Link] [DOI:10.1016/j.ijsolstr.2014.05.028]
31. Kami A, Mollaei Dariani B, Sadough Vanini A, Comsa DS, Banabic D. Numerical determination of the forming limit curves of anisotropic sheet metals using GTN damage model. Journal of Materials Processing Technology. 2015;216:472-483. [Link] [DOI:10.1016/j.jmatprotec.2014.10.017]
32. Zhao PJ, Chen ZH, Dong CF. Experimental and numerical analysis of micromechanical damage for DP600 steel in fine-blanking process. Journal of Materials Processing Technology. 2016;236:16-25. [Link] [DOI:10.1016/j.jmatprotec.2016.05.002]
33. Jiang W, Li Y, Su J. Modified GTN model for a broad range of stress states and application to ductile fracture. European Journal of Mechanics-A/Solids. 2016;57:132-148. [Link] [DOI:10.1016/j.euromechsol.2015.12.009]
34. Zhang ZL, Thaulow C, Ødegård J. A complete Gurson model approach for ductile fracture. Engineering Fracture Mechanics. 2000;67(2):155-168. [Link] [DOI:10.1016/S0013-7944(00)00055-2]
35. Steglich D, Brocks W. Micromechanical modelling of the behaviour of ductile materials including particles. Computational Materials Science. 1997;9(1-2):7-17. [Link] [DOI:10.1016/S0927-0256(97)00053-0]
36. Chhibber R, Arora N, Gupta S, Dutta B. Estimation of Gurson material parameters in bimetallic weldments for the nuclear reactor heat transport piping system. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2008;222(12):2331-2349. [Link] [DOI:10.1243/09544062JMES1001]
37. Springmann M, Kuna M. Identification of material parameters of the Gurson-Tvergaard-Needleman model by combined experimental and numerical techniques. Computational Materials Science. 2005;33(4):501-509. [Link] [DOI:10.1016/j.commatsci.2005.02.002]
38. Nahshon K, Hutchinson JW. Modification of the Gurson model for shear failure. European Journal of Mechanics-A/Solids. 2008;27(1):1-17. [Link] [DOI:10.1016/j.euromechsol.2007.08.002]
39. Xue L. Constitutive modeling of void shearing effect in ductile fracture of porous materials. Engineering Fracture Mechanics. 2008;75(11):3343-3366. [Link] [DOI:10.1016/j.engfracmech.2007.07.022]
40. Malcher L, Andrade Pires FM, Cesar De Sá JMA. An extended GTN model for ductile fracture under high and low stress triaxiality. International Journal of Plasticity. 2014;54:193-228. [Link] [DOI:10.1016/j.ijplas.2013.08.015]
41. Zhao PJ, Chen ZH, Dong CF. Failure analysis based on microvoids damage model for DP600 steel on in-situ tensile tests. Engineering Fracture Mechanics. 2016;154:152-168. [Link] [DOI:10.1016/j.engfracmech.2015.11.017]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.