Volume 20, Issue 4 (April 2020)                   Modares Mechanical Engineering 2020, 20(4): 1089-1098 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asemani H, Soltani N. Comparison of Stroboscopic Shearography and Time-Average Shearography Methods for Nondestructive Testing. Modares Mechanical Engineering 2020; 20 (4) :1089-1098
URL: http://mme.modares.ac.ir/article-15-34480-en.html
1- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran , h.asemani@ut.ac.ir
2- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
Abstract:   (2710 Views)
Shearography is a powerful optics method, which is capable of measuring derivatives of displacement, surface strains, and nondestructive testing. Time-average shearography and stroboscopic shearography have been developed for full-field vibration analysis. In this paper, the capability of time-average shearography and stroboscopic shearography for nondestructive testing has been compared using a proposed shearography configuration. In order to generate vibration, the proposed experimental system was equipped with a piezoelectric excitation mechanism. The time-average and stroboscopic shearography inspections were carried out by sweeping the excitation frequency of the piezoelectric. Stroboscopic shearography successfully detected the defect in the frequency ranges of 1300-1600, 6000-8000 Hz and 12600-13300 Hz, while time-average shearography detected the defect only in the frequency ranges of 6000-8000 Hz, and 12900-13100 Hz. The results of inspections of propylene specimen with a 10 mm circular hole indicated that stroboscopic shearography provides a more reliable assessment than time-average shearography. Compared to time-average shearography, stroboscopic shearography gives more clear fringes in the all frequency range. In addition, stroboscopic shearography could recognize the defect in wider frequency ranges.
Full-Text [PDF 1656 kb]   (1192 Downloads)    
Article Type: Original Research | Subject: Mechatronics
Received: 2019/07/4 | Accepted: 2019/10/6 | Published: 2020/04/17

References
1. Akbari D, Soltani N, Reshadi F. Application of digital shearography for nondestructive testing of materials with thermal loading. Modares Mechanical Engineering. 2013;13(4):36-45. (in Persian) [Link]
2. Akbari D, Asemani H, Soltani N. Analysis of laser interferometry parameters in the evaluation of defects in the polymer matrix composites. Modares Mechanical Engineering. 2017;17(9):372-380. (in Persian) [Link]
3. Asemani H, Park J, Lee JR, Soltani N. Development of PZT-excited stroboscopic shearography for full-field nondestructive evaluation. Review of Scientific Instruments. 2017;88(5):053301. [Link] [DOI:10.1063/1.4981938]
4. Yang L, Steinchen W, Kupfer G, Mäckel P, Vössing F. Vibration analysis by means of digital shearography. Optics and Lasers in Engineering. 1998;30(2):199-212. [Link] [DOI:10.1016/S0143-8166(98)00016-5]
5. Schöntag J, Willemann D, Gonçalves Jr AA. Depth assessment of defects in composite plates combining shearography and vibration excitation. Speckle 2010: Optical Metrology, 2010 September 13-15, Florianopolis, Brazil. Bellingham, Washington: SPIE; 2010. [Link] [DOI:10.1117/12.871200]
6. Asemani H, Soltani N, Shivaei Kojouri A. non-destructive testing of large area aluminum plate using stroboscopic shearography. The Biennial International Conference on Experimental Solid Mechanics and Dynamics; 2018 February 13-14; Tehran, Iran. [Link]
7. Liu H, Guo S, Chen YF, Tan CY, Zhang L. Acoustic shearography for crack detection in metallic plates. Smart Materials and Structures. 2018;27(8);085018. [Link] [DOI:10.1088/1361-665X/aacfe9]
8. Liu H, Liu M, Zhang L, Chen YF, Tan CY, Guo S, et al. Directed acoustic shearography for crack detection around fastener holes in aluminum plates. NDT & E International. 2018;100:124-131. [Link] [DOI:10.1016/j.ndteint.2018.09.007]
9. Hung YY, Taylor CE. Speckle-shearing interferometric camera: A tool for measurement of derivatives of surface-displacement. Proceedings of SPIE 0041, Developments in Laser Technology II, 1974 March 1, Bellingham, Washington. [Link] [DOI:10.1117/12.953850]
10. Steinchen W, Kupfer G, Mäckel P. Vibration analysis by digital shearography. The Journal of the Acoustical Society of America. 2000;108(5):2622. [Link] [DOI:10.1121/1.4743759]
11. Vandenrijt JF, Thizy C, Georges M. Time-averaged phase-stepped ESPI with CO2 laser and shearography in the visible for identification of vibration mode shapes. Proceeding of the VI International Conference on Speckle Metrology, 24 Agust 2015, Guanajuato, Mexico. Bellingham, Washington: SPIE; 2015. [Link] [DOI:10.1117/12.2195337]
12. Toh SL, Tay CJ, Shang HM, Lin QY. Time-average shearography in vibration analysis. Optics & Laser Technology, 1995;27(1):51-55. [Link] [DOI:10.1016/0030-3992(95)93959-U]
13. Toh SL, Shang HM, Chau FS, Tay CJ. Flaw detection in composites using time-average shearography. Optics & Laser Technology. 1991;23(1):25-30. [Link] [DOI:10.1016/0030-3992(91)90039-Q]
14. Sim CW, Chau FS, Toh SL. Vibration analysis and non-destructive testing with real-time shearography. Optics & Laser Technology. 1995;27(1):45-49. [Link] [DOI:10.1016/0030-3992(95)93958-T]
15. Mohan NK, Saldner HO, Molin NE. Electronic shearography applied to static and vibrating objects. Optics Communications. 1994;108(4-6):197-202. [Link] [DOI:10.1016/0030-4018(94)90648-3]
16. Findeis D, Gryzagoridis J. Digital shearography and vibration excitation for NDT of aircraft components. 11th International Conference on Vibration Measurements by Laser and Noncontact Techniques-Aivela 2014: Advances and Applications, 2014 June 25-27, Ancona, Italy. Maryland, United States: American Institute of Physics; 2014. [Link] [DOI:10.1063/1.4879566]
17. Chatters TC, Pouet BF, Krishnaswamy S. Additive-subtractive phase-modulated shearography with synchronized acoustic stressing. Experimental Mechanics. 1995;35(2):159-165. [Link] [DOI:10.1007/BF02326475]
18. Asemani H, Soltani N. The effectiveness of laser shearography for the inspection of wall thinning in a large aluminum plate. Journal of Nondestructive Evaluation. 2019;38(2):38-56. [Link] [DOI:10.1007/s10921-019-0594-5]
19. Asemani H, Soltani N. Application of electronic speckle pattern shearing interferometry with high-speed camera in vibration analysis of piezoelectric transducer. International Journal of Applied Mechanics. 2019;11(6):1950056. [Link] [DOI:10.1142/S175882511950056X]
20. Yang LX, Schuth M, Thomas D, Wang YH, Voesing F. Stroboscopic digital speckle pattern interferometry for vibration analysis of microsystem. Optics and Lasers in Engineering. 2009;47(2):252-258. [Link] [DOI:10.1016/j.optlaseng.2008.04.025]
21. Zhu L, Wu S, Yang L. Stroboscopic digital shearographic system for vibration analysis of large-area object. Instruments and Experimental Techniques. 2014;57(4):493-498. [Link] [DOI:10.1134/S0020441214040113]
22. Asemani H, Park J, Soltani N, Lee JR. Defect detection using stroboscopic shearography. Conference of the Korean Society for Aeronautical & Space Sciences; 2016 April; Seorak Daemyung, South Korea: 157-158. [Link]
23. Asemani H, Park J, Soltani N, Lee JR. The applications of shearography method for nondestructive testing and vibration analysis. Annual Spring Conference of Korean Society for Nondestructive Testing; 2016 May; Wonju, South Korea. [Link]
24. Farrahi GH, Ghodrati M, Azadi M, Rezvani Rad M. Stress-strain time-dependent behavior of A356.0 aluminum alloy subjected to cyclic thermal and mechanical loadings. Mechanics of Time-Dependent Materials. 2014;18(3):475-491. [Link] [DOI:10.1007/s11043-014-9238-4]
25. Macedo FJ, Benedet ME, Fantin AV, Willemann DP, Silva FAA, Albertazzi A. Inspection of defects of composite materials in inner cylindrical surfaces using endoscopic shearography. Optics and Lasers in Engineering. 2018;104:100-108. [Link] [DOI:10.1016/j.optlaseng.2017.06.005]
26. Ye Y, Ma K, Zhou H, Arola D, Zhang D. An automated shearography system for cylindrical surface inspection. Measurement. 2019;135:400-405. [Link] [DOI:10.1016/j.measurement.2018.11.085]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.