Volume 20, Issue 7 (July 2020)                   Modares Mechanical Engineering 2020, 20(7): 1841-1850 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amini S, Akbarzadeh A. Optimal Trajectory Generation to Residual Vibration Reduction of Transport Process based on Dynamic Programming Algorithm. Modares Mechanical Engineering 2020; 20 (7) :1841-1850
URL: http://mme.modares.ac.ir/article-15-34620-en.html
1- Mechanical Engineering Department, Engineering Faculty, Ferdowsi University, Mashhad, Iran
2- Mechanical Engineering Department, Engineering Faculty, Ferdowsi University, Mashhad, Iran , ali_akbarzadeh_t@um.ac.ir
Abstract:   (3073 Views)
Residual vibrations suppression of suspended payload transporting has numerous applications in the field of transporting. In previous studies, many control methods have been applied to reduce vibrations. Imprecise dynamic modeling, using sensor equipment, and high-cost designing of control systems decrease the performance of these methods. In the present study, an optimal trajectory of payload transport by dynamic programming algorithm is generated to reduce the residual swing. Dynamic programming algorithm is a computational technique by which breaking the problem down into sub-problems, an optimal trajectory recursively is executed with the sequence of sub-decision. In addition, input shaping method is applied to create the optimal trajectory. In this technique, the residual vibration is reduced by convolving an impulse sequence with a transport trajectory and consequently a desired trajectory creating. The simulation of optimal trajectories has been done in EDMS software. Regarding to the uncertainty of the dynamic modeling to which result error computational in input shaping technique, the dynamic programming algorithm is suggested for rapid transport of nonlinear systems. Experimental simulation section is carried out with connecting the pendulum to a robot to measure the vibration in ending of the transport and the time needed after swing stopping. Finally, the simulation results showed that the dynamic programming implementation leads to the reduction of the residual swing in the ending of the transport more than the prior method. Besides, the time needed for stop swing is 2 seconds lower than polynomial trajectory and 1 second lower than input shaping.
Full-Text [PDF 1062 kb]   (2166 Downloads)    
Article Type: Qualitative Research | Subject: Mechatronics
Received: 2019/07/9 | Accepted: 2019/12/13 | Published: 2020/07/20

References
1. Shin JH, Lee DH, Kwak MK. Vibration suppression of cart-pendulum system by combining the input-shaping control and the position-input position-output feedback control. Journal of Mechanical Science and Technology. 2019;33(12):5761-5768. [Link] [DOI:10.1007/s12206-019-1120-5]
2. Hu QL, Wang Z, Gao H. Sliding mode and shaped input vibration control of flexible systems. IEEE Transactions on Aerospace and Electronic Systems. 2008;44(2):503-519. [Link] [DOI:10.1109/TAES.2008.4560203]
3. Conker C, Yavuz H, Bilgic HH. A review of command shaping techniques for elimination of residual vibrations in flexible-joint manipulators. Journal of Vibroengineering. 2016;18(5):2947-2958. [Link] [DOI:10.21595/jve.2016.16725]
4. Mohad Tumari MZ, Shabudin L, Zawawi MA, Ahmad Shah LH. Active sway control of a gantry crane using hybrid input shaping and PID control schemes. IOP Conference Series: Materials Science and Engineering. 2013;50(1): 012029 [Link] [DOI:10.1088/1757-899X/50/1/012029]
5. Smith OJM. Posicast control of damped oscillatory systems, Proceedings of the IRE. 1957;45(9):1249-1255. [Link] [DOI:10.1109/JRPROC.1957.278530]
6. Starr GP. Swing-free transport of suspended objects with a path-controlled robot manipulator. Journal of Dynamic Systems, Measurement, and Control. 1985;107(1):97-100. [Link] [DOI:10.1115/1.3140715]
7. Singer NC, Seering WP. Preshaping command inputs to reduce system vibration. Journal of Dynamic Systems, Measurement, and Control. 1990;112(1):76-82. [Link] [DOI:10.1115/1.2894142]
8. Liu R, Gao Y, Yang S, Yang Y. Vibration control of the boom system of truck-mounted concrete pump based on constant-position commandless input shaping technique. Shock and Vibration. 2015;2015(1):1-9. [Link] [DOI:10.1155/2015/420935]
9. Bing L, Wei YL, Zhu ShX, Zheng YQ. Hybrid multi-mode input shaping suppresses the vibration of a 3-DOF parallel manipulator. Advanced Materials Research. 2011;291:2115-2118. [Link] [DOI:10.4028/www.scientific.net/AMR.291-294.2115]
10. Yavuz H, Selçuk M, Sadettin K. Hybrid input shaping to suppress residual vibration of flexible systems. Journal of Vibration and Control. 2012;18(1):132-140. [Link] [DOI:10.1177/1077546311403179]
11. Nguyen QC, Quang TNH. Input shaping control to reduce residual vibration of a flexible beam. Journal of Computer Science and Cybernetics. 2016;32(1):73-88. [Link] [DOI:10.15625/1813-9663/32/1/6765]
12. Parker GG, Petterson B, Dohrmann CR, Robinett RD. Vibration suppression of fixed-time jib crane maneuvers. Applications of Smart Structures Technologies. 1995;2447:131-140. [Link] [DOI:10.1117/12.209327]
13. Zameroski D, Starr G, Wood J, Lumia R. Rapid swing-free transport of nonlinear payloads using dynamic programming. Journal of Dynamic Systems, Measurement, and Control. 2008;130(4):041001. [Link] [DOI:10.1115/1.2936384]
14. Dhanda A, Franklin GF. Optimal control formulations of vibration reduction problems. IEEE Transactions on Automatic Control. 2010;55(2):378-394. [Link] [DOI:10.1109/TAC.2009.2034940]
15. Yoon HJ, Chung SY, Kang HS, Hwang MJ. Trapezoidal motion profile to suppress residual vibration of flexible object moved by robot. Electronics. 2019;8(1):30-45. [Link] [DOI:10.3390/electronics8010030]
16. Moriello L, Biagiotti L, Melchiorri C. Multidimensional trajectories generation with vibration suppression capabilities: The role of exponential B-splines. IFAC-Papers On Line. 2017;50(1):6054-6059. [Link] [DOI:10.1016/j.ifacol.2017.08.1374]
17. Uchiyama N, Sano Sh, Hanrda K. Residual vibration suppression using simple motion trajectory for mechanical systems. Journal of Control, Measurement, and System Integration. 2015;8(3):195-200. [Link] [DOI:10.9746/jcmsi.8.195]
18. Xin P, Rong J, Yang Y, Xiang D, Xiang Y. Trajectory planning with residual vibration suppression for space manipulator based on particle swarm optimization algorithm. Advances in Mechanical Engineering. 2017;9(4):1687814017692694. [Link] [DOI:10.1177/1687814017692694]
19. Dimova AS, Kotov KY, Mal'tsev AS, Nesterov AA, Filippov MN. Quadrotor control in payload transportation on suspension. Optoelectronics. Instrumentation and Data Processing. 2018;54(5):520-524. [Link] [DOI:10.3103/S8756699018050151]
20. Palunko I, Fierro R, Cruz P. Trajectory generation for swing-free maneuvers of a quadrotor with suspended payload: A dynamic programming approach. International Conference on Robotics and Automation, 14-18 May 2012, Saint Paul, United States. Piscataway: IEEE; 2012. [Link] [DOI:10.1109/ICRA.2012.6225213]
21. Gorinevsky D, Vukovich G. Nonlinear input shaping control of flexible spacecraft reorientation maneuver. Journal of Guidance, Control, and Dynamics. 1998;21(2):264-270. [Link] [DOI:10.2514/2.4252]
22. Shin K, McKay N. A dynamic programming approach to trajectory planning of robotic manipulators. IEEE Transactions on Automatic Control. 1986;31(6):491-500. [Link] [DOI:10.1109/TAC.1986.1104317]
23. Sawczuk A, Mroz Z. Application of dynamic programming to optimization of structures. In: Twisdale LA, Khachaturian N. optimization in structural design. Heidelberg: Springer; 1975. [Link]
24. Guo M, Gu D, Zha W, Zhu X, Su Y. Controlling a quadrotor carrying a cable-suspended load to pass through a window. Journal of Intelligent & Robotic Systems. 2019;98:1-5. [Link] [DOI:10.1007/s10846-019-01038-6]
25. Cruz PJ, Fierro R. Cable-suspended load lifting by a quadrotor UAV: hybrid model, trajectory generation, and control. Autonomous Robots. 2017;41(8):1629-1643. [Link] [DOI:10.1007/s10514-017-9632-2]
26. Singhose WE, Seering WP, MC Singer. Input shaping for vibration reduction with specified insensitivity to modeling errors. Japan-USA Symposium on Flexible Automation. 1996;1:307-313. [Link]
27. Kapila V, Tzes A, Yan Q. Closed-loop input shaping for flexible structures using time-delay control. Journal of. Dynamic Systems, Measurement, and Control. 2000;122(3):454-460. [Link] [DOI:10.1115/1.1286269]
28. Peng S. A generalized dynamic programming principle and hamilton-jacobi-bellman equation. Stochastics and Stochastics Reports. 1992;38(2):119-134. [Link] [DOI:10.1080/17442509208833749]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.