1. Farajzadeh R, Andrianov A, Krastev R, Hirasaki GJ, Rossen WR. Foam-oil interaction in porous media: Implications for foam assisted enhanced oil recovery. Advances in Colloid and Interface Science. 2012;183-184:1-13. [
Link] [
DOI:10.1016/j.cis.2012.07.002]
2. Nikolov AD, Randie M, Shetty CS, Wasan DT. Chemical demulsification of oil-in-water emulsion using air-flotation: the importance of film thickness stability. Chemical Engineering Communications. 1996;152-153(1):337-350. [
Link] [
DOI:10.1080/00986449608936572]
3. Chakibi H, Hénaut I, Salonen A, Langevin D, Argillier JF. Role of bubble-drop interactions and salt addition in flotation performance. Energy &Fuels. 2018;32(3);4049-4056. [
Link] [
DOI:10.1021/acs.energyfuels.7b04053]
4. Eftekhardadkhah M, Aanesen SV, Rabe K, Øye G. Oil removal from produced water during laboratory and pilot-scale gas flotation: The influence of interfacial adsorption and induction times. Energy & Fuels. 2015;29(11):7734-7740. [
Link] [
DOI:10.1021/acs.energyfuels.5b02110]
5. Eftekhardadkhah M, Øye GJE. Induction and coverage times for crude oil droplets spreading on air bubbles. Environmental Science & Technology. 2013;47(24):14154-14160. [
Link] [
DOI:10.1021/es403574g]
6. Grattoni C, Moosai R, Dawe RA. Photographic observations showing spreading and non-spreading of oil on gas bubbles of relevance to gas flotation for oily wastewater cleanup. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2003;214(1-3):151-155. [
Link] [
DOI:10.1016/S0927-7757(02)00385-0]
7. Hayatdavoudi A, Howdeshell M, Godeaux E, Pednekar N, Dhumal V. Performance analysis of a novel compact flotation unit. Journal of Energy Resources Technology. 2011;133(1):013101. [
Link] [
DOI:10.1115/1.4003497]
8. Won JY, Krägel J, Gochev G, Ulaganathan V, Javadi A, Makievski AV, et al. Bubble-bubble interaction in aqueous β-Lactoglobulin solutions. Food Hydrocolloids. 2014;34:15-21. [
Link] [
DOI:10.1016/j.foodhyd.2013.07.027]
9. Won JY, Krägel J, Makievski AV, Javadi A, Gochev G, Loglio G, et al. Drop and bubble micro manipulator (DBMM)-a unique tool for mimicking processes in foams and emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014;441:807-814. [
Link] [
DOI:10.1016/j.colsurfa.2013.04.027]
10. Dudek M, Øye GJE. Microfluidic study on the attachment of crude oil droplets to gas bubbles. Energy & Fuels. 2018;32(10):10513-10521. [
Link] [
DOI:10.1021/acs.energyfuels.8b02236]
11. Wang K, Qin K, Lu Y, Luo G, Wang T. Gas/liquid/liquid three‐phase flow patterns and bubble/droplet size laws in a double T‐junction microchannel. AIChE Journal. 2015;61(5):1722-1734. [
Link] [
DOI:10.1002/aic.14758]
12. Leal LG. Flow induced coalescence of drops in a viscous fluid. Physics of Fluids. 2004;16(6):1833-1851. [
Link] [
DOI:10.1063/1.1701892]
13. Chesters AK, Hofman G. Bubble coalescence in pure liquids. Applied Scientific Research. 1982;38:353-361. [
Link] [
DOI:10.1007/BF00385965]
14. Chesters AK. The modelling of coalescence processes in fluid-liquid dispersions: A review of current understanding. Chemical Engineering Research & Design. 1991;69:259-270. [
Link]
15. Chesters AK, Bazhlekov IB. Effect of insoluble surfactants on drainage and rupture of a film between drops interacting under a constant force. Journal of Colloid and Interface Science. 2000;230(2):229-243. [
Link] [
DOI:10.1006/jcis.2000.7074]
16. Howarth WJ. Coalescence of drops in a turbulent flow field. Chemical Engineering Science. 1964;19(1):33-38. [
Link] [
DOI:10.1016/0009-2509(64)85003-X]
17. Howarth WJ. Measurement of coalescence frequency in an agitated tank. AIChE Journal. 1967;13(5):1007-1013. [
Link] [
DOI:10.1002/aic.690130532]
18. Liao Y, Lucas D. A literature review on mechanisms and models for the coalescence process of fluid particles. Chemical Engineering Science. 2010;65(10):2851-2864. [
Link] [
DOI:10.1016/j.ces.2010.02.020]
19. Prince MJ, Blanch HW. Bubble coalescence and break-up in air-sparged bubble columns. AIChE Journal. 1990;36(10):1485-1499. [
Link] [
DOI:10.1002/aic.690361004]
20. Sovova H. Breakage and coalescence of drops in a batch stirred vessel-II comparison of model and experiments. Chemical Engineering Science. 1981;36(9):1567-1573. [
Link] [
DOI:10.1016/0009-2509(81)85117-2]
21. Lehr F, Mewes D. A transport equation for the interfacial area density applied to bubble columns. Chemical Engineering Science. 2001;56(3):1159-1166. [
Link] [
DOI:10.1016/S0009-2509(00)00335-3]
22. Kamp J, Kraume M. From single drop coalescence to droplet swarms-Scale-up considering the influence of collision velocity and drop size on coalescence probability. Chemical Engineering Science. 2016;156:162-177. [
Link] [
DOI:10.1016/j.ces.2016.08.028]
23. Kamp J, Villwock J, Kraume M. Drop coalescence in technical liquid/liquid applications: A review on experimental techniques and modeling approaches. Reviews in Chemical Engineering. 2017;33(1):1-47. [
Link] [
DOI:10.1515/revce-2015-0071]
24. Frostad JM, Collins MC, Leal LG. Cantilevered-capillary force apparatus for measuring multiphase fluid interactions. Langmuir. 2013;29(15):4715-4725. [
Link] [
DOI:10.1021/la304115k]
25. Tabor RF, Grieser F, Dagastine RR, Chan DYC. Measurement and analysis of forces in bubble and droplet systems using AFM. Journal of Colloid and Interface Science. 2012;371(1):1-14. [
Link] [
DOI:10.1016/j.jcis.2011.12.047]
26. Tabor RF, Lockie H, Mair D, Manica R, Chan DYC, Grieser F, et al. Combined AFM− confocal microscopy of oil droplets: Absolute separations and forces in nanofilms. The Journal of Physical Chemistry Letters. 2011;2(9):961-965. [
Link] [
DOI:10.1021/jz2003606]
27. Tabor RF, Wu C, Lockie H, Manica R, Chan DYC, Grieser F, et al. Homo-and hetero-interactions between air bubbles and oil droplets measured by atomic force microscopy. Soft Matter. 2011;7(19):8977-8983. [
Link] [
DOI:10.1039/c1sm06006f]
28. Bonhomme R, Magnaudet J, Duval F, Piar B. Inertial dynamics of air bubbles crossing a horizontal fluid-fluid interface. Journal of Fluid Mechanics. 2012;707:405-443. [
Link] [
DOI:10.1017/jfm.2012.288]
29. Feng J, Muradoglu M, Kim H, Ault JT, Stone HA. Dynamics of a bubble bouncing at a liquid/liquid/gas interface. Journal of Fluid Mechanics. 2016;807:324-352. [
Link] [
DOI:10.1017/jfm.2016.517]
30. Feng J, Roché M, Vigolo D, Arnaudov LN, Stoyanov SD, Gurkov TD, et al. Nanoemulsions obtained via bubble-bursting at a compound interface. Nature Physics. 2014;10(8):606-612. [
Link] [
DOI:10.1038/nphys3003]
31. Li EQ, Al-Otaibi SA, Vakarelski IU, Thoroddsen ST. Satellite formation during bubble transition through an interface between immiscible liquids. Journal of Fluid Mechanics. 2014;744:R1. [
Link] [
DOI:10.1017/jfm.2014.67]
32. Li EQ, Vakarelski IU, Chan DYC, Thoroddsen ST. Stabilization of thin liquid films by repulsive van der waals force. Langmuir. 2014;30(18):5162-5169. [
Link] [
DOI:10.1021/la500868y]
33. Ge XH, Geng YH, Zhang QC, Shao M, Chen J, Luo GS, et al. Four reversible and reconfigurable structures for three-phase emulsions: Extended morphologies and applications. Scientific Reports. 2017;7:42738. [
Link] [
DOI:10.1038/srep42738]
34. Lee TY, Choi TM, Shim TS, Frijns RAM, Kim SH. Microfluidic production of multiple emulsions and functional microcapsules. Physical Chemistry and Soft Matter. 2016;16(18):3415-3440. [
Link] [
DOI:10.1039/C6LC00809G]
35. Planchette C, Lorenceau E, Brenn G. Liquid encapsulation by binary collisions of immiscible liquid drops. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010;365(1-3):89-94. [
Link] [
DOI:10.1016/j.colsurfa.2009.12.011]
36. Silva BFB, Rodríguez-Abreu C, Vilanova N. Recent advances in multiple emulsions and their application as templates. Current Opinion in Colloid & Interface Science. 2016;25:98-108. [
Link] [
DOI:10.1016/j.cocis.2016.07.006]
37. Torza S, Mason SG. Three-phase interactions in shear and electrical field. Current Journal of Colloid and Interface Science. 1970;33(1):67-83. [
Link] [
DOI:10.1016/0021-9797(70)90073-1]
38. Torza S, Mason SG. Coalescence of two immiscible liquid drops. Science. 1969;163(3869):813-814. [
Link] [
DOI:10.1126/science.163.3869.813]
39. Kirkpatrick RD, Lockett MJ. The influence of approach velocity on bubble coalescence. Chemical Engineering Science. 1974;29(12):2363-2373. [
Link] [
DOI:10.1016/0009-2509(74)80013-8]
40. Zawala J, Krasowska M, Dabros T, Malysa K. Influence of bubble kinetic energy on its bouncing during collisions with various interfaces. The Canadian Journal of Chemical Engineering. 2007;85(5):669-678. [
Link] [
DOI:10.1002/cjce.5450850514]
41. Moosai R, Dawe RA. Gas attachment of oil droplets for gas flotation for oily wastewater cleanup. Separation and Purification Technology. 2003;33(3):303-314. [
Link] [
DOI:10.1016/S1383-5866(03)00091-1]
42. Vakarelski IU, Lee J, Dagastine RR, Chan DYC, Stevens GW, Grieser F. Bubble colloidal AFM probes formed from ultrasonically generated bubbles. Langmuir. 2008;24(3):603-605. [
Link] [
DOI:10.1021/la7032059]
43. Butt HJ, Graf K, Kappl M. Physics and chemistry of interfaces. Hoboken: John Wiley & Sons; 2013. [
Link]
44. Princen HM. The equilibrium shape of interfaces, drops, and bubbles. Rigid and deformable particles at interfaces. Surface and Colloid Science. 1969;2:1-84. [
Link]
45. Schatz MF, Neitzel GP. Experiments on thermocapillary instabilities. Annual Review of Fluid Mechanics. 2001;33(1):93-127. [
Link] [
DOI:10.1146/annurev.fluid.33.1.93]
46. Van Honschoten JW, Brunets N, Tas NR. Capillarity at the nanoscale. Chemical Society Reviews. 2010;39(3):1096-1114. [
Link] [
DOI:10.1039/b909101g]
47. Ross SL. Measurements and models of the dispersed phase mixing process [dissertation]. Ann Arbor: University Microfilms; 1971. [
Link]
48. Coulaloglou CA. Dispersed phase interactions in an agitated flow vessel [dissertation]. Ann Arbor: University Microfilms; 1976. [
Link]