Volume 20, Issue 8 (August 2020)                   Modares Mechanical Engineering 2020, 20(8): 2075-2085 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ami Ahmadi H, Ebadi A, Hosseinalipour S. Experimental Investigation of Size Effect on the Bubble-Droplet Coalescence in Water. Modares Mechanical Engineering 2020; 20 (8) :2075-2085
URL: http://mme.modares.ac.ir/article-15-34784-en.html
1- Energy Conversion Department, Mechanical Engineering Faculty, Iran University of Science and Technology, Tehran, Iran
2- Energy Conversion Department, Mechanical Engineering Faculty, Iran University of Science and Technology, Tehran, Iran , alipour@iust.ac.ir
Abstract:   (1682 Views)

Nowadays, the interaction between gas bubbles and oil droplets plays an important role in the efficiency of many industrial processes. Therefore, it is of great importance to study the influencing factors on these processes. So, in the present paper, the effect of droplet and bubble size on the drainage time of the trapped intervening film between droplet and bubble was investigated. Six series of experiments were conducted for various sizes and three characteristic time scales including drainage time, coverage time, and rupture time were measured. Each of these experiments was repeated at least five times. The results showed that the drainage time changed independently of the droplet/bubble size. Moreover, it was observed that due to the nature of the phenomenon, the measured drainage times in each equivalent size are notably scattered, which means that the microscopic interactions in the water film and between bubble-droplet interfaces have significant impacts on the drainage time. Also, in the current experiment, it was found that the volume of the intervening film between droplet and bubble has no vital role in the drainage time of the mediate water film.

Full-Text [PDF 596 kb]   (961 Downloads)    
Article Type: Original Research | Subject: Two & Multi Phase Flow
Received: 2019/07/16 | Accepted: 2020/06/7 | Published: 2020/08/15

1. Farajzadeh R, Andrianov A, Krastev R, Hirasaki GJ, Rossen WR. Foam-oil interaction in porous media: Implications for foam assisted enhanced oil recovery. Advances in Colloid and Interface Science. 2012;183-184:1-13. [Link] [DOI:10.1016/j.cis.2012.07.002]
2. Nikolov AD, Randie M, Shetty CS, Wasan DT. Chemical demulsification of oil-in-water emulsion using air-flotation: the importance of film thickness stability. Chemical Engineering Communications. 1996;152-153(1):337-350. [Link] [DOI:10.1080/00986449608936572]
3. Chakibi H, Hénaut I, Salonen A, Langevin D, Argillier JF. Role of bubble-drop interactions and salt addition in flotation performance. Energy &Fuels. 2018;32(3);4049-4056. [Link] [DOI:10.1021/acs.energyfuels.7b04053]
4. Eftekhardadkhah M, Aanesen SV, Rabe K, Øye G. Oil removal from produced water during laboratory and pilot-scale gas flotation: The influence of interfacial adsorption and induction times. Energy & Fuels. 2015;29(11):7734-7740. [Link] [DOI:10.1021/acs.energyfuels.5b02110]
5. Eftekhardadkhah M, Øye GJE. Induction and coverage times for crude oil droplets spreading on air bubbles. Environmental Science & Technology. 2013;47(24):14154-14160. [Link] [DOI:10.1021/es403574g]
6. Grattoni C, Moosai R, Dawe RA. Photographic observations showing spreading and non-spreading of oil on gas bubbles of relevance to gas flotation for oily wastewater cleanup. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2003;214(1-3):151-155. [Link] [DOI:10.1016/S0927-7757(02)00385-0]
7. Hayatdavoudi A, Howdeshell M, Godeaux E, Pednekar N, Dhumal V. Performance analysis of a novel compact flotation unit. Journal of Energy Resources Technology. 2011;133(1):013101. [Link] [DOI:10.1115/1.4003497]
8. Won JY, Krägel J, Gochev G, Ulaganathan V, Javadi A, Makievski AV, et al. Bubble-bubble interaction in aqueous β-Lactoglobulin solutions. Food Hydrocolloids. 2014;34:15-21. [Link] [DOI:10.1016/j.foodhyd.2013.07.027]
9. Won JY, Krägel J, Makievski AV, Javadi A, Gochev G, Loglio G, et al. Drop and bubble micro manipulator (DBMM)-a unique tool for mimicking processes in foams and emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014;441:807-814. [Link] [DOI:10.1016/j.colsurfa.2013.04.027]
10. Dudek M, Øye GJE. Microfluidic study on the attachment of crude oil droplets to gas bubbles. Energy & Fuels. 2018;32(10):10513-10521. [Link] [DOI:10.1021/acs.energyfuels.8b02236]
11. Wang K, Qin K, Lu Y, Luo G, Wang T. Gas/liquid/liquid three‐phase flow patterns and bubble/droplet size laws in a double T‐junction microchannel. AIChE Journal. 2015;61(5):1722-1734. [Link] [DOI:10.1002/aic.14758]
12. Leal LG. Flow induced coalescence of drops in a viscous fluid. Physics of Fluids. 2004;16(6):1833-1851. [Link] [DOI:10.1063/1.1701892]
13. Chesters AK, Hofman G. Bubble coalescence in pure liquids. Applied Scientific Research. 1982;38:353-361. [Link] [DOI:10.1007/BF00385965]
14. Chesters AK. The modelling of coalescence processes in fluid-liquid dispersions: A review of current understanding. Chemical Engineering Research & Design. 1991;69:259-270. [Link]
15. Chesters AK, Bazhlekov IB. Effect of insoluble surfactants on drainage and rupture of a film between drops interacting under a constant force. Journal of Colloid and Interface Science. 2000;230(2):229-243. [Link] [DOI:10.1006/jcis.2000.7074]
16. Howarth WJ. Coalescence of drops in a turbulent flow field. Chemical Engineering Science. 1964;19(1):33-38. [Link] [DOI:10.1016/0009-2509(64)85003-X]
17. Howarth WJ. Measurement of coalescence frequency in an agitated tank. AIChE Journal. 1967;13(5):1007-1013. [Link] [DOI:10.1002/aic.690130532]
18. Liao Y, Lucas D. A literature review on mechanisms and models for the coalescence process of fluid particles. Chemical Engineering Science. 2010;65(10):2851-2864. [Link] [DOI:10.1016/j.ces.2010.02.020]
19. Prince MJ, Blanch HW. Bubble coalescence and break-up in air-sparged bubble columns. AIChE Journal. 1990;36(10):1485-1499. [Link] [DOI:10.1002/aic.690361004]
20. Sovova H. Breakage and coalescence of drops in a batch stirred vessel-II comparison of model and experiments. Chemical Engineering Science. 1981;36(9):1567-1573. [Link] [DOI:10.1016/0009-2509(81)85117-2]
21. Lehr F, Mewes D. A transport equation for the interfacial area density applied to bubble columns. Chemical Engineering Science. 2001;56(3):1159-1166. [Link] [DOI:10.1016/S0009-2509(00)00335-3]
22. Kamp J, Kraume M. From single drop coalescence to droplet swarms-Scale-up considering the influence of collision velocity and drop size on coalescence probability. Chemical Engineering Science. 2016;156:162-177. [Link] [DOI:10.1016/j.ces.2016.08.028]
23. Kamp J, Villwock J, Kraume M. Drop coalescence in technical liquid/liquid applications: A review on experimental techniques and modeling approaches. Reviews in Chemical Engineering. 2017;33(1):1-47. [Link] [DOI:10.1515/revce-2015-0071]
24. Frostad JM, Collins MC, Leal LG. Cantilevered-capillary force apparatus for measuring multiphase fluid interactions. Langmuir. 2013;29(15):4715-4725. [Link] [DOI:10.1021/la304115k]
25. Tabor RF, Grieser F, Dagastine RR, Chan DYC. Measurement and analysis of forces in bubble and droplet systems using AFM. Journal of Colloid and Interface Science. 2012;371(1):1-14. [Link] [DOI:10.1016/j.jcis.2011.12.047]
26. Tabor RF, Lockie H, Mair D, Manica R, Chan DYC, Grieser F, et al. Combined AFM− confocal microscopy of oil droplets: Absolute separations and forces in nanofilms. The Journal of Physical Chemistry Letters. 2011;2(9):961-965. [Link] [DOI:10.1021/jz2003606]
27. Tabor RF, Wu C, Lockie H, Manica R, Chan DYC, Grieser F, et al. Homo-and hetero-interactions between air bubbles and oil droplets measured by atomic force microscopy. Soft Matter. 2011;7(19):8977-8983. [Link] [DOI:10.1039/c1sm06006f]
28. Bonhomme R, Magnaudet J, Duval F, Piar B. Inertial dynamics of air bubbles crossing a horizontal fluid-fluid interface. Journal of Fluid Mechanics. 2012;707:405-443. [Link] [DOI:10.1017/jfm.2012.288]
29. Feng J, Muradoglu M, Kim H, Ault JT, Stone HA. Dynamics of a bubble bouncing at a liquid/liquid/gas interface. Journal of Fluid Mechanics. 2016;807:324-352. [Link] [DOI:10.1017/jfm.2016.517]
30. Feng J, Roché M, Vigolo D, Arnaudov LN, Stoyanov SD, Gurkov TD, et al. Nanoemulsions obtained via bubble-bursting at a compound interface. Nature Physics. 2014;10(8):606-612. [Link] [DOI:10.1038/nphys3003]
31. Li EQ, Al-Otaibi SA, Vakarelski IU, Thoroddsen ST. Satellite formation during bubble transition through an interface between immiscible liquids. Journal of Fluid Mechanics. 2014;744:R1. [Link] [DOI:10.1017/jfm.2014.67]
32. Li EQ, Vakarelski IU, Chan DYC, Thoroddsen ST. Stabilization of thin liquid films by repulsive van der waals force. Langmuir. 2014;30(18):5162-5169. [Link] [DOI:10.1021/la500868y]
33. Ge XH, Geng YH, Zhang QC, Shao M, Chen J, Luo GS, et al. Four reversible and reconfigurable structures for three-phase emulsions: Extended morphologies and applications. Scientific Reports. 2017;7:42738. [Link] [DOI:10.1038/srep42738]
34. Lee TY, Choi TM, Shim TS, Frijns RAM, Kim SH. Microfluidic production of multiple emulsions and functional microcapsules. Physical Chemistry and Soft Matter. 2016;16(18):3415-3440. [Link] [DOI:10.1039/C6LC00809G]
35. Planchette C, Lorenceau E, Brenn G. Liquid encapsulation by binary collisions of immiscible liquid drops. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010;365(1-3):89-94. [Link] [DOI:10.1016/j.colsurfa.2009.12.011]
36. Silva BFB, Rodríguez-Abreu C, Vilanova N. Recent advances in multiple emulsions and their application as templates. Current Opinion in Colloid & Interface Science. 2016;25:98-108. [Link] [DOI:10.1016/j.cocis.2016.07.006]
37. Torza S, Mason SG. Three-phase interactions in shear and electrical field. Current Journal of Colloid and Interface Science. 1970;33(1):67-83. [Link] [DOI:10.1016/0021-9797(70)90073-1]
38. Torza S, Mason SG. Coalescence of two immiscible liquid drops. Science. 1969;163(3869):813-814. [Link] [DOI:10.1126/science.163.3869.813]
39. Kirkpatrick RD, Lockett MJ. The influence of approach velocity on bubble coalescence. Chemical Engineering Science. 1974;29(12):2363-2373. [Link] [DOI:10.1016/0009-2509(74)80013-8]
40. Zawala J, Krasowska M, Dabros T, Malysa K. Influence of bubble kinetic energy on its bouncing during collisions with various interfaces. The Canadian Journal of Chemical Engineering. 2007;85(5):669-678. [Link] [DOI:10.1002/cjce.5450850514]
41. Moosai R, Dawe RA. Gas attachment of oil droplets for gas flotation for oily wastewater cleanup. Separation and Purification Technology. 2003;33(3):303-314. [Link] [DOI:10.1016/S1383-5866(03)00091-1]
42. Vakarelski IU, Lee J, Dagastine RR, Chan DYC, Stevens GW, Grieser F. Bubble colloidal AFM probes formed from ultrasonically generated bubbles. Langmuir. 2008;24(3):603-605. [Link] [DOI:10.1021/la7032059]
43. Butt HJ, Graf K, Kappl M. Physics and chemistry of interfaces. Hoboken: John Wiley & Sons; 2013. [Link]
44. Princen HM. The equilibrium shape of interfaces, drops, and bubbles. Rigid and deformable particles at interfaces. Surface and Colloid Science. 1969;2:1-84. [Link]
45. Schatz MF, Neitzel GP. Experiments on thermocapillary instabilities. Annual Review of Fluid Mechanics. 2001;33(1):93-127. [Link] [DOI:10.1146/annurev.fluid.33.1.93]
46. Van Honschoten JW, Brunets N, Tas NR. Capillarity at the nanoscale. Chemical Society Reviews. 2010;39(3):1096-1114. [Link] [DOI:10.1039/b909101g]
47. Ross SL. Measurements and models of the dispersed phase mixing process [dissertation]. Ann Arbor: University Microfilms; 1971. [Link]
48. Coulaloglou CA. Dispersed phase interactions in an agitated flow vessel [dissertation]. Ann Arbor: University Microfilms; 1976. [Link]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.