1. Florence AL, Ahrens T. Interaction of projectiles and composite armor. United States: Defense Technical Information Center; 1969. [
Link] [
DOI:10.21236/AD0698543]
2. Tate A. A theory for the deceleration of long rods after impact. Journal of the Mechanics and Physics of Solids. 1967;15(6):387-399. [
Link] [
DOI:10.1016/0022-5096(67)90010-5]
3. Wilkins ML. Mechanics of penetration and perforation. International Journal of Engineering Science. 1978;16(11):793-807. [
Link] [
DOI:10.1016/0020-7225(78)90066-6]
4. Jonas G, Zukas JA. Mechanics of penetration: analysis and experiment. International Journal of Engineering Science. 1978;16(11):879-903. [
Link] [
DOI:10.1016/0020-7225(78)90073-3]
5. Backman ME, Goldsmith W. The mechanics of penetration of projectiles into targets. International Journal of Engineering Science. 1978;16(1):1-99. [
Link] [
DOI:10.1016/0020-7225(78)90002-2]
6. Ravid M, Bodner S. Dynamic perforation of viscoplastic plates by rigid projectiles. International Journal of Engineering Science. 1983;21(6):577-591. [
Link] [
DOI:10.1016/0020-7225(83)90105-2]
7. Bless S, Rosenberg Z, Yoon B. Hypervelocity penetration of ceramics. International Journal of Impact Engineering. 1987;5(1-4):165-171. [
Link] [
DOI:10.1016/0734-743X(87)90036-4]
8. Woodward RL. A simple one-dimensional approach to modelling ceramic composite armour defeat. International Journal of Impact Engineering. 1990;9(4):455-474. [
Link] [
DOI:10.1016/0734-743X(90)90035-T]
9. Den Reijer PC. Impact on ceramic faced armour [Dissertation]. Delft University of Technology: TU Delft; 1991. [
Link]
10. Zaera R, Sánchez-Gálvez V. Analytical modelling of normal and oblique ballistic impact on ceramic/metal lightweight armours. International Journal of Impact Engineering. 1998;21(3):133-148. [
Link] [
DOI:10.1016/S0734-743X(97)00035-3]
11. Fellows N, Barton P. Development of impact model for ceramic-faced semi-infinite armour. International journal of impact engineering. 1999;22(8):793-811. [
Link] [
DOI:10.1016/S0734-743X(99)00017-2]
12. Diederen A, Broos J, Peijen M. Modern armour configurations against 14.5 mm AP. Lightweight Armour Systems Symposium. Shrivenham, United Kingdom: Publisher??; 1999. [
Link]
13. Chen X, Li Q. Deep penetration of a non-deformable projectile with different geometrical characteristics. International Journal of Impact Engineering. 2002;27(6):619-637. [
Link] [
DOI:10.1016/S0734-743X(02)00005-2]
14. Chen X, Li Q. Perforation of a thick plate by rigid projectiles. International Journal of Impact Engineering. 2003;28(7):743-759. [
Link] [
DOI:10.1016/S0734-743X(02)00152-5]
15. Chen X, Li Q, Fan S. Oblique perforation of thick metallic plates by rigid projectiles. Acta Mechanica Sinica. 2006;22(4):367-76. [
Link] [
DOI:10.1007/s10409-006-0015-8]
16. Rosenberg Z, Ashuach Y, Dekel E. More on the ricochet of eroding long rods-Validating the analytical model with 3D simulations. International Journal of Impact Engineering. 2007;34(5):942-957. [
Link] [
DOI:10.1016/j.ijimpeng.2006.04.005]
17. Balos S, Grabulov V, Sidjanin L, Pantic M. Wire fence as applique armour. Materials & Design. 2010;31(3):1293-1301. [
Link] [
DOI:10.1016/j.matdes.2009.09.013]
18. Balos S, Grabulov V, Sidjanin L, Pantic M, Radisavljevic I. Geometry, mechanical properties and mounting of perforated plates for ballistic application. Materials & Design. 2010;31(6):2916-2924. [
Link] [
DOI:10.1016/j.matdes.2009.12.031]
19. Mishra B, Ramakrishna B, Jena P, Kumar KS, Madhu V, Gupta NK. Experimental studies on the effect of size and shape of holes on damage and microstructure of high hardness armour steel plates under ballistic impact. Materials & Design. 2013;43:17-24. [
Link] [
DOI:10.1016/j.matdes.2012.06.037]
20. Radisavljevic I, Balos S, Nikacevic M, Sidjanin L. Optimization of geometrical characteristics of perforated plates. Materials & Design. 2013;49:81-89. [
Link] [
DOI:10.1016/j.matdes.2012.12.010]
21. Kılıç N, Bedir S, Erdik A, Ekici B, Taşdemirci A, Güden M. Ballistic behavior of high hardness perforated armor plates against 7.62 mm armor piercing projectile. Materials & Design. 2014;63:427-438. [
Link] [
DOI:10.1016/j.matdes.2014.06.030]
22. Babaei H, Mostofi TM, Alitavoli M. Experimental and analytical investigation into large ductile transverse deformation of monolithic and multi-layered metallic square targets struck normally by rigid spherical projectile. Thin-Walled Structures. 2016;107:257-265. [
Link] [
DOI:10.1016/j.tws.2016.06.013]
23. Mostofi TM, Babaei H, Alitavoli M, Hosseinzadeh S. On dimensionless numbers for predicting large ductile transverse deformation of monolithic and multi-layered metallic square targets struck normally by rigid spherical projectile. Thin-Walled Structures. 2017;112:118-124. [
Link] [
DOI:10.1016/j.tws.2016.12.014]
24. Kılıç N, Ekici B, Bedir S. Optimization of high hardness perforated steel armor plates using finite element and response surface methods. Mechanics of Advanced Materials and Structures. 2017;24(7):615-624. [
Link] [
DOI:10.1080/15376494.2016.1196771]
25. Fras T, Faderl N. Influence of add-on perforated plates on the protective performance of light-weight armour systems. 2018;9(31):31-48. [French] [
Link] [
DOI:10.5604/01.3001.0011.7177]
26. Johnson GR, Cook WH, Johnson G, Cook W. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of the 7th International Symposium on Ballistics. Berlin: ScienceOpen Inc.; 1983. pp. 541-547. [
Link]
27. Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics. 1985;21(1):31-48. [
Link] [
DOI:10.1016/0013-7944(85)90052-9]
28. List G, Sutter G, Arnoux JJ. Analysis of the high speed sliding interaction between titanium alloy and tantalum. Wear. 2013;301(1-2):663-670. [
Link] [
DOI:10.1016/j.wear.2012.11.070]
29. Holmquist TJ, Templeton DW, Bishnoi KD. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications. International Journal of Impact Engineering. 2001;25(3):211-231. [
Link] [
DOI:10.1016/S0734-743X(00)00046-4]
30. Cronin DS, Bui K, Kaufmann C, McIntosh G, Berstad T, Cronin D. Implementation and validation of the Johnson-Holmquist ceramic material model in LS-Dyna. 4th European LS-DYNA Users Conference. Germany: DYNAmore; 2003. [
Link]
31. Alipour R, Najarian F. A FEM study of explosive welding of double layer tubes. International Scholarly and Scientific Research & Innovation. 2011;5(1):183-185. [
Link]