1. Mehr VY, Rezaeian A, Toroghinejad MR. Application of accumulative roll bonding and anodizing process to produce Al-Cu-Al2O3 composite. Materials & Design. 2015 ;70:53-59. [
Link] [
DOI:10.1016/j.matdes.2014.12.042]
2. Eizadjou M, Talachi AK, Manesh HD, Shahabi HS, Janghorban K. Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process. Composites Science and Technology. 2008;68(9):2003-2009. [
Link] [
DOI:10.1016/j.compscitech.2008.02.029]
3. Salimi S, Izadi H, Gerlich AP. Fabrication of an aluminum-carbon nanotube metal matrix composite by accumulative roll-bonding. Journal of materials science. 2011;46(2):409-415. [
Link] [
DOI:10.1007/s10853-010-4855-z]
4. Moghadam AD, Omrani E, Menezes PL, Rohatgi PK. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene-a review. Composites Part B: Engineering. 2015;77:402-420. [
Link] [
DOI:10.1016/j.compositesb.2015.03.014]
5. Morovvati MR, Mollaei-Dariani B. The formability investigation of CNT-reinforced aluminum nano-composite sheets manufactured by accumulative roll bonding. The International Journal of Advanced Manufacturing Technology. 2018;95(9-12):3523-33. [
Link] [
DOI:10.1007/s00170-017-1205-1]
6. Kitazono K, Sato E, Kuribayashi K. Novel manufacturing process of closed-cell aluminum foam by accumulative roll-bonding. Scripta Materialia. 2004 ;50(4):495-498. [
Link] [
DOI:10.1016/j.scriptamat.2003.10.035]
7. Nasresfahani MR, Shamanian M. Development and characterization of Al/MWCNT-Al2O3 hybrid composite by accumulative roll bonding. Journal of Materials Science. 2018;53(15):10812-10821. [
Link] [
DOI:10.1007/s10853-018-2372-7]
8. Zare H, Jahedi M, Toroghinejad MR, Meratian M, Knezevic M. Compressive, shear, and fracture behavior of CNT reinforced Al matrix composites manufactured by severe plastic deformation. Materials & Design. 2016;106:112-119. [
Link] [
DOI:10.1016/j.matdes.2016.05.109]
9. Tabesh A, Ebrahimi Gh, Ezatpour HR. The investigation and comparison of mechanical propertise and microstructure Al/CNT and Al/CNT/Al2O3 copmosites produced by mixed accumulative roll bounding. Journal of Science and Technology of Composites. 2018;4(4):464-470. [Persian] [
Link]
10. Samadzadeh M, Toroghinejad MR. The influence of carbon nanotube and roll bonding parameters on the bond strength of Al sheets. Journal of Materials Engineering and Performance. 2014;23(5):1887-1895. [
Link] [
DOI:10.1007/s11665-014-0949-0]
11. Mahdavian MM, Khatami-Hamedani H, Abedi HR. Macrostructure evolution and mechanical properties of accumulative roll bonded Al/Cu/Sn multilayer composite. Journal of Alloys and Compounds. 2017;703:605-613. [
Link] [
DOI:10.1016/j.jallcom.2017.01.300]
12. Salari H, Mahmoodi M, Borhani E. New strategy to simultaneous increase in strength and electrical conductivity of ufg copper strip fabricated via accumulative roll bonding- cold roll bonding. Modares Mechanical Engineering. 2019;19(9):2085-2092. [Persian] [
Link]
13. Yao G, Mei Q, Li J, Li C, Ma Y, Chen F, et al. Hard copper with good electrical conductivity fabricated by accumulative roll-bonding to ultrahigh strains. Metals. 2016;6(5):115-120. [
Link] [
DOI:10.3390/met6050115]
14. Yao GC, Mei QS, Li JY, Li CL, Ma Y, Chen F, et al. Cu/C composites with a good combination of hardness and electrical conductivity fabricated from Cu and graphite by accumulative roll-bonding. Materials & Design. 2016;110:124-129. [
Link] [
DOI:10.1016/j.matdes.2016.07.129]
15. Mehr VY, Toroghinejad MR, Rezaeian A. Mechanical properties and microstructure evolutions of multilayered Al-Cu composites produced by accumulative roll bonding process and subsequent annealing. Materials Science and Engineering: A. 2014;601:40-47. [
Link] [
DOI:10.1016/j.msea.2014.02.023]
16. Bowler N, Huang Y. Electrical conductivity measurement of metal plates using broadband eddy-current and four-point methods. Measurement Science and Technology. 2005;16(11):2193. [
Link] [
DOI:10.1088/0957-0233/16/11/009]
17. Vaidyanath LR, Nicholas MG, Milner DR. Pressure welding by rolling. British Welding Jour. 1959;6:13-28 [
Link]
18. Jamaati R, Toroghinejad MR. Investigation of the parameters of the cold roll bonding (CRB) process. Materials Science and Engineering: A. 2010;527(9):2320-2326. [
Link] [
DOI:10.1016/j.msea.2009.11.069]
19. Saito Y, Utsunomiya H, Tsuji N, Sakai T. Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process. Acta materialia. 1999;47(2):579-583. [
Link] [
DOI:10.1016/S1359-6454(98)00365-6]
20. Torralba JD, Da Costa CE, Velasco F. P/M aluminum matrix composites: an overview. Journal of Materials Processing Technology. 2003;133(1-2):203-206. [
Link] [
DOI:10.1016/S0924-0136(02)00234-0]
21. Yazdani A, Salahinejad E. Evolution of reinforcement distribution in Al-B4C composites during accumulative roll bonding. Materials & Design. 2011;32(6):3137-3142. [
Link] [
DOI:10.1016/j.matdes.2011.02.063]
22. Yazdani A, Salahinejad E, Moradgholi J, Hosseini M. A new consideration on reinforcement distribution in the different planes of nanostructured metal matrix composite sheets prepared by accumulative roll bonding (ARB). Journal of Alloys and Compounds. 2011;509(39):9562-9564. [
Link] [
DOI:10.1016/j.jallcom.2011.07.084]
23. Shaarbaf M, Toroghinejad MR. Nano-grained copper strip produced by accumulative roll bonding process. Materials Science and Engineering A. 2008 ;473(1-2):28-33. [
Link] [
DOI:10.1016/j.msea.2007.03.065]
24. Saito Y, Tsuji N, Utsonomiya H, Sakai T, Hong RG. Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scripta Materialia. 1998;39(9):1221-1227. [
Link] [
DOI:10.1016/S1359-6462(98)00302-9]
25. Hansen N, Huang X, Ueji R, Tsuji N. Structure and strength after large strain deformation. Materials Science and Engineering: A. 2004;387:191-194. [
Link] [
DOI:10.1016/j.msea.2004.02.078]