1. Venugopal A, Agrawal A, Prabhu SV. Review on vortex flowmeter-Designer prespective. Sensors and Actuators A. 2011;70:8-23. [
Link] [
DOI:10.1016/j.sna.2011.05.034]
2. El-Wahed AK, Sproston JL. The influence of shedder shape on the performance of the electrostatic vortex flowmeter. Flow Measurement and Instrumentation. 1991;2(3):169-179. [
Link] [
DOI:10.1016/0955-5986(91)90029-Q]
3. Venugopal A, Agrawal A, Prabhu SV. On the linearity, turndown ratio and shape of the bluff body for vortex flowmeter. Measurement. 2019;137:477-483. [
Link] [
DOI:10.1016/j.measurement.2019.02.001]
4. Peng BH, Miau JJ, Bao F, Weng LD, Chao CC, Hsu CC. Performance of vortex shedding from a circular cylinder with a slit normal to the stream. Flow Measurement and Instrumentation. 2012;25:54-62. [
Link] [
DOI:10.1016/j.flowmeasinst.2011.07.003]
5. Olsen JF, Rajagopalan S. Vortex shedding behind modified circular cylinders. Journal of Wind Engineering and Industrial Aerodynamics. 2000;86(1):56-63. [
Link] [
DOI:10.1016/S0167-6105(00)00003-9]
6. Peng J, Fang M. Response of a dual triangulate bluff body vortex flowmeter to oscillatory flow. Flow Measurement and Instrumentation. 2013;35:16-27. [
Link] [
DOI:10.1016/j.flowmeasinst.2013.11.001]
7. Peng J, Fu X, Chen Y. Flow measurement by a new type vortex flowmeter of dual triangulate bluff body. Sensors and Actuators A. 2004;115:53-59. [
Link] [
DOI:10.1016/j.sna.2004.03.020]
8. Musić M, Ahić-Džokić M, Džemić Z. A new approach to detection of vortices using ultrasound. Flow measurement and Instrumentation. 2015;42:40-46. [
Link] [
DOI:10.1016/j.flowmeasinst.2015.01.001]
9. Venugopal A, Agrawal A, Prabhu SV. Performance evaluation of piezoelectric and differential pressure sensor for vortex flowmeters. Measurement. 2014;50:10-18. [
Link] [
DOI:10.1016/j.measurement.2013.12.018]
10. Elghobashi S. On predicting particle-laden turbulent flows. Applied Scientific Research. 1994; 52:309-329. [
Link] [
DOI:10.1007/BF00936835]
11. Bayoudh M, Touati H, N'Ticha HB. Study of the effect of particles on the kinetic parameters of a turbulent two-phase flow. Energy Procedia. 2019;162:201-10. [
Link] [
DOI:10.1016/j.egypro.2019.04.022]
12. Squires KD, Eaton JK. Particle response and turbulent modification in isotropic turbulence. Physics of Fluids A. 1990;2(7):1191-11203. [
Link] [
DOI:10.1063/1.857620]
13. Zhang Y, Reese JM. Particle-gas turbulence interactions in a kinetic theory approach to granular flows. International Journal of Multiphase Flow. 2001;27(11):1945-1964. [
Link] [
DOI:10.1016/S0301-9322(01)00039-8]
14. Gidaspow D, Bezburuah R, Ding J. Hydrodynamics of circulating fluidized beds: kinetic theory approach. In: 7th Fluidization Conference;1992, 3-8 May: Gold Coast, Australia. Chicago: Department of Chemical Engineerin. [
Link]
15. Miao Z, Kuang S, Zughbi H, Yu A. CFD simulation of dilute-phase pneumatic conveying of powders. Powder Technology. 2019;349(1):70-83. [
Link] [
DOI:10.1016/j.powtec.2019.03.031]
16. Benavides A, Wachem BV. Numerical simulation and validation of dilute turbulent gas-particle flow with inelastic collisions and turbulence modulation. Powder Technology. 2008;182(2):294-306. [
Link] [
DOI:10.1016/j.powtec.2007.06.028]
17. Zhang H, Huang Y, Sun Z. A study of mass flow rate measurement based on the vortex shedding principle. Flow Measurement and Instrumentation. 2006;17(1):29-38. [
Link] [
DOI:10.1016/j.flowmeasinst.2005.08.002]
18. Tsuji Y, Morilawa Y, Shiomi H. LDV measurements of an air-solid two-phase flow in a vertical pipe. Journal of Fluid Mechanic. 1984;139:417-434. [
Link] [
DOI:10.1017/S0022112084000422]
19. Ferrante A, Elghobashi S. On the physical mechanisms of two-phase coupling in particle-laden isotropic turbulence. Physics of Fluids. 2003 Feb;15(2):315-329. [
Link] [
DOI:10.1063/1.1532731]