Volume 20, Issue 6 (June 2020)                   Modares Mechanical Engineering 2020, 20(6): 1501-1510 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadri Koupaei A, Soleymanzadeh D, Ghafarirad H. Modeling and Compensation of Charge Leakage in Self-Sensing Position Estimation for Piezoelectric Actuators. Modares Mechanical Engineering 2020; 20 (6) :1501-1510
URL: http://mme.modares.ac.ir/article-15-35972-en.html
1- Mechanical Engineering Department, Amirkabir University of Technology, Tehran, Iran
2- Mechanical Engineering Department, Amirkabir University of Technology, Tehran, Iran , ghafarirad@aut.ac.ir
Abstract:   (3092 Views)
Today, piezoelectric actuators are widely used in micro-positioning applications due to unique features such as high precision, fast response and high natural frequency. Despite the aforementioned characteristics, nonlinear characteristics such as hysteresis deteriorate the precision of piezoelectric actuators. In order to reduce the effect of hysteresis in control applications, external sensors are used for feedback control schemes. But, high costs and space limitations are prohibitive factors which limit the application of external sensors. Hence, an alternative is using self-sensing methods that is based on electromechanical characteristics of piezoelectric materials which eventually eliminate external sensors. In this research, self-sensing method is applied for position estimation in piezoelectric actuators. The most conventional method is based on the linear relation of electrical charge and actuator position which the position can be estimated by measuring the actuator charge. But this method is faced with serious challenges due to charge drift, especially at low frequencies. For this purpose, a method for modeling and compensating of charge drift is proposed. Then, by linearization of the electric charge-position relation, the self-sensing method is implemented based on the compensated electric charge measurement. Experiments have confirmed that this method can effectively estimate the actuator position with 1.5% estimation error in the presence of charge leakage.
Full-Text [PDF 895 kb]   (1799 Downloads)    
Article Type: Original Research | Subject: Mechatronics
Received: 2019/08/31 | Accepted: 2019/12/30 | Published: 2020/06/20

References
1. Xu W, Wu Y. Piezoelectric actuator for machining on macro-to-micro cylindrical components by a precision rotary motion control. Mechanical Systems and Signal Processing. 2019;114:439-447. [Link] [DOI:10.1016/j.ymssp.2018.05.035]
2. Wang S, Rong W, Wang L, Pei Z, Sun L. A novel inchworm type piezoelectric rotary actuator with large output torque: Design, analysis and experimental performance. Precision Engineering. 2018;51:545-551. [Link] [DOI:10.1016/j.precisioneng.2017.10.010]
3. Ghosh B, Jain RK, Majumder S, Roy SS, Mukhopadhyay S. Experimental characterizations of bimorph piezoelectric actuator for robotic assembly. Journal of Intelligent Material Systems and Structures. 2017;28(15):2095-2109. [Link] [DOI:10.1177/1045389X16685441]
4. Liseli JB, Agnus J, Lutz P, Rakotondrabe M. Self-sensing method considering the dynamic impedance of piezoelectric based actuators for ultralow frequency. IEEE Robotics and Automation Letters. 2018;3(2):1049-1055. [Link] [DOI:10.1109/LRA.2018.2794514]
5. Ivan IA, Rakotondrabe M, Lutz P, Chaillet N. Quasistatic displacement self-sensing method for cantilevered piezoelectric actuators. Review of Scientific Instruments. 2009;80(6):065102. [Link] [DOI:10.1063/1.3142486]
6. Islam MN, Seethaler RJ. Sensorless position control for piezoelectric actuators using a hybrid position observer. IEEE/ASME Transactions on Mechatronics. 2013;19(2):667-675. [Link] [DOI:10.1109/TMECH.2013.2250990]
7. Dosch JJ, Inman DJ, Garcia E. A self-sensing piezoelectric actuator for collocated control. Journal of Intelligent Material Systems and Structures. 1992;3(1):166-185. [Link] [DOI:10.1177/1045389X9200300109]
8. Seki K, Iwasaki M. Application of self-sensing technique for position control considering vibration suppression in piezo-driven stage. IEEE International Conference on Mechatronics (ICM), 6-8 March 2015, Nagoya, Japan. Piscataway: IEEE; 2015. [Link] [DOI:10.1109/ICMECH.2015.7083988]
9. Zarif Mansour S, Seethaler R. Simultaneous quasi-static displacement and force self-sensing of piezoelectric actuators by detecting impedance. Sensors and Actuators A: Physical. 2018;274:272-277. [Link] [DOI:10.1016/j.sna.2018.03.022]
10. Ivan IA, Rakotondrabe M, Lutz P, Chaillet N. Current integration force and displacement self-sensing method for cantilevered piezoelectric actuators. Review of Scientific Instruments. 2009;80(12):126103. [Link] [DOI:10.1063/1.3244040]
11. Rakotondrabe M. Combining self-sensing with an Unkown-Input-Observer to estimate the displacement, the force and the state in piezoelectric cantilevered actuators. American Control Conference, ACC'2013, Jan 2013, United States. Bengaluru: HAL; 2013. [Link] [DOI:10.1109/ACC.2013.6580535]
12. Rakotondrabe M, Ivan IA, Khadraoui S, Clevy C, Lutz P, Chaillet N. Dynamic displacement self-sensing and robust control of cantilever piezoelectric actuators dedicated for microassembly. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 6-9 July 2010, Montreal, ON, Canada. Piscataway: IEEE; 2011. [Link] [DOI:10.1109/AIM.2010.5695741]
13. Rakotondrabe M, Ivan IA, Khadraoui S, Lutz P, Chaillet N. Simultaneous displacement/force self-sensing in piezoelectric actuators and applications to robust control. IEEE/ASME Transactions on Mechatronics. 2014;20(2):519-531. [Link] [DOI:10.1109/TMECH.2014.2300333]
14. Ghafarirad H, Rezaei SM, Zareinejad M, Mardi NA. Charge-based hysteresis compensation in low impedance piezoelectric actuators by a modified Prandtl-Ishlinskii model. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2019;233(1):83-93. [Link] [DOI:10.1177/0954408917743391]
15. Zhang LS, Liu YB, Pan CL, Feng ZH. Leakage current characterization and compensation for piezoelectric actuator with charge drive. Sensors and Actuators A: Physical. 2013;199:116-122. [Link] [DOI:10.1016/j.sna.2013.05.014]
16. Soleymanzadeh D, Ghafarirad H, Zareinejad M. Charge-based robust position estimation for low impedance piezoelectric actuators. Measurement. 2019;147:106839. [Link] [DOI:10.1016/j.measurement.2019.07.067]
17. Soleymanzadeh D, Ghafarirad H, Zareinejad M. Sensorless adaptive sliding mode position control for piezoelectric actuators with charge leakage. Journal of Intelligent Material Systems and Structures. 2020;31(1):40-52. [Link] [DOI:10.1177/1045389X19880009]
18. Ma Y, Zhang X, Xu M, Xie S. Hybrid model based on Preisach and support vector machine for novel dual-stack piezoelectric actuator. Mechanical Systems and Signal Processing. 2013;34(1-2):156-172. [Link] [DOI:10.1016/j.ymssp.2012.05.015]
19. Ang WT, Khosla PK, Riviere CN. Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Transactions on Mechatronics. 2007;12(2):134-142. [Link] [DOI:10.1109/TMECH.2007.892824]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.