Volume 20, Issue 6 (June 2020)                   Modares Mechanical Engineering 2020, 20(6): 1611-1623 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hoseini V, Shariati M, Mahdizadeh Rokhi M. Collapse Behaviour and Energy Absorption of Hemispherical and Conical Shells under Impact Loading Considering Different Damage Models. Modares Mechanical Engineering 2020; 20 (6) :1611-1623
URL: http://mme.modares.ac.ir/article-15-36057-en.html
1- Mechanical Engineering Department, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad, Iran
2- Mechanical Engineering Department, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad, Iran , mshariati44@um.ac.ir
3- Mechanical & Mechatronics Engineering Faculty, Shahrood University of Technology, Shahrood, Iran
Abstract:   (3604 Views)
In this research, the behavior of conical and hemispherical shells, made of steel and aluminum, respectively, subject to impact loading has been investigated using experimental and numerical methods. The energy absorption capacity of these adsorbers has been calculated and the effect of foam injection on the collapse behavior and energy absorption capacity of aluminum hemispherical shells has been determined. The effect of geometrical parameters on the collapse behavior and adsorption capacity of steel conical adsorbers has also been investigated. Numerical simulations have been performed using the Abaqus finite element software and the results have been compared with the results of the experiments. In Numerical analysis, three damage models, Johnson-Cook, GTN, and modified Rousselier have been used. The Johnson-Cook damage model is available in Abaqus software but the GTN and the modified Rousselier damage models have been created through programming in Abaqus software. The results show that the modified Rousselier damage model is more accurate than the other damage models. Also, in this research, the effect of thickness of conical shells on their efficiency has been investigated and it becomes clear that increasing the thickness of absorber increases efficiency. In addition, foam injection does not a positive effect on the hemispherical absorber performance.
Full-Text [PDF 994 kb]   (1751 Downloads)    
Article Type: Original Research | Subject: Damage Mechanics
Received: 2019/08/31 | Accepted: 2020/02/16 | Published: 2020/06/20

References
1. Ghomarian F. Experimental and numerical analysis of complex thin-wall structures on an axial crush. Aerospace Mechanics Journal. 2012;8(1):99-109. [Persion] [Link]
2. Alexander J. An approximate analysis of the collapse of thin cylindrical shells under axial loading. The Quarterly Journal of Mechanics and Applied Mathematics. 1960;13(1):10-15. [Link] [DOI:10.1093/qjmam/13.1.10]
3. Abramowicz W, Jones N. Dynamic axial crushing of circular tubes. International Journal of Impact Engineering. 1984;2(3):263-281. [Link] [DOI:10.1016/0734-743X(84)90010-1]
4. Abramowicz W, Jones N. Dynamic progressive buckling of circular and square tubes. International Journal of Impact Engineering. 1986;4(4):243-270. [Link] [DOI:10.1016/0734-743X(86)90017-5]
5. Nia AA, Hamedani JH. Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries. Thin-Walled Structures. 2010;48(12):946-954. [Link] [DOI:10.1016/j.tws.2010.07.003]
6. Shariati M, Sedighi M, Saemi J, Eipakchi H, Allahbakhsh H. Numerical and experimental investigation on ultimate strength of cracked cylindrical shells subjected to combined loading. Mechanika. 2010;4(84):12-19. [Link]
7. Shariati M, Davarpanah M, Chavoshan H, Allahbakhsh H. Numerical and experimental investigations on buckling and control amount of energy absorption of stainless steel 304L shells with various shapes under axial loading. Modares Mechanical Engineering. 2014;14(3):60-68. [Persion] [Link]
8. Allahbakhsh HR, Shariati M, Sedighi M. Effect of stiffeners on crashworthiness of square aluminium columns considering damage evolution. Journal of Central South University. 2013;20:599-607. [Link] [DOI:10.1007/s11771-013-1524-9]
9. Azarakhsh S, Rahi A, Derikvandi S, Ghamarian A. Numerical and experimental investigations of axial and oblique crushing of bitubular conical tubes under clamped boundary condition. Aerospace Knowledge and Technology Journal. 2017;6(1):67-79. [Persion] [Link]
10. Azarakhsh S, Rahi A, Ghamarian A. Experimental and numerical investigation of crushing of brass cylindrical tubes. Journal of Solid and Fluid Mechanics. 2016;6(2):181-196. [Persion] [Link]
11. Pirmohammad S, Esmaeili Marzdashti S. Study on the collapse behavior of multi-cell conical structures and their optimization using artificial neural networks. Journal of Solid and Fluid Mechanics. 2017;7(2):111-127. [Persion] [Link] [DOI:10.1016/j.tws.2018.01.022]
12. Pirmohammad S, Esmaeili Marzdashti S. Comparison of energy absorption performance of multi-walled square and circular structures using copras method and optimization of circular structures using RSM. Journal of Solid and Fluid Mechanics. 2017;7(3):133-147. [Persion] [Link]
13. Tarlochan F, Samer F, Hamouda A, Ramesh S, Khalid K. Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces. Thin-Walled Structures. 2013;71:7-17. [Link] [DOI:10.1016/j.tws.2013.04.003]
14. Hanssen A, Hopperstad O, Langseth M, Ilstad H. Validation of constitutive models applicable to aluminium foams. International Journal of Mechanical Sciences. 2002;44(2):359-406. [Link] [DOI:10.1016/S0020-7403(01)00091-1]
15. Hanssen AG, Langseth M, Hopperstad OS. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler. International Journal of Impact Engineering. 2000;24(5):475-507. [Link] [DOI:10.1016/S0734-743X(99)00170-0]
16. Reid S, Reddy T. Axial crushing of foam-filled tapered sheet metal tubes. International Journal of Mechanical Sciences. 1986;28(10):643-656. [Link] [DOI:10.1016/0020-7403(86)90010-X]
17. Abramowicz W, Wierzbicki T. Axial crushing of foam-filled columns. International Journal of Mechanical Sciences. 1988;30(3-4):263-271. [Link] [DOI:10.1016/0020-7403(88)90059-8]
18. Reyes A, Langseth M, Hopperstad O. Crashworthiness of aluminum extrusions subjected to oblique loading: Experiments and numerical analyses. International Journal of Mechanical Sciences. 2002;44(9):1965-1984. [Link] [DOI:10.1016/S0020-7403(02)00050-4]
19. Reyes A, Langseth M, Hopperstad O. Square aluminum tubes subjected to oblique loading. International Journal of Impact Engineering. 2003;28(10):1077-1106. [Link] [DOI:10.1016/S0734-743X(03)00045-9]
20. Børvik T, Hopperstad O, Reyes A, Langseth M, Solomos G, Dyngeland T. Empty and foam-filled circular aluminium tubes subjected to axial and oblique quasistatic loading. International Journal of Crashworthiness. 2003;8(5):481-494. [Link] [DOI:10.1533/ijcr.2003.0254]
21. Santosa SP, Wierzbicki T, Hanssen AG, Langseth M. Experimental and numerical studies of foam-filled sections. International Journal of Impact Engineering. 2000;24(5):509-534. [Link] [DOI:10.1016/S0734-743X(99)00036-6]
22. Kavi H, Toksoy AK, Guden M. Predicting energy absorption in a foam-filled thin-walled aluminum tube based on experimentally determined strengthening coefficient. Materials & Design. 2006;27(4):263-269. [Link] [DOI:10.1016/j.matdes.2004.10.024]
23. Shariati M, Allahbakhsh HR, Saemi J, Sedighi M. Optimization of foam filled spot-welded column for the crashworthiness design. Mechanika. 2010;83(3):10-16. [Link]
24. Allahbakhsh HR, Shariati M, Saemi J. Crashworthiness optimization of foam-filled and empty spot-welded columns. Australian Journal of Basic and Applied Sciences. 2010;4(12):6404-6411. [Link]
25. Alavi Nia A, Farshad A. Experimental and numerical investigations of effects of section geometry and metallic foam filler on deformation and energy absorption characteristics of thin-walled tubes. Journal of Solid and Fluid Mechanics. 2014;4(1):51-63. [Persian] [Link]
26. Azarakhsh S, Ghamarian A, Khodarahmi H. Investigation of axial and oblique crushing of empty and foam-filled conical tubes under clamped boundary condition. Journal of Solid and Fluid Mechanics. 2016;6(4):139-159. [Persion] [Link]
27. Mirza M, Barton D, Church P. The effect of stress triaxiality and strain-rate on the fracture characteristics of ductile metals. Journal of Materials Science. 1996;31(2):453-461. [Link] [DOI:10.1007/BF01139164]
28. Needleman A, Tvergaard V. An analysis of ductile rupture in notched bars. Journal of the Mechanics and Physics of Solids. 1984;32(6):461-490. [Link] [DOI:10.1016/0022-5096(84)90031-0]
29. Hancock J, Mackenzie A. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. Journal of the Mechanics and Physics of Solids. 1976;24(2-3):147-160. [Link] [DOI:10.1016/0022-5096(76)90024-7]
30. Zhu H, Qin C, Wang JQ, Qi FJ. Characterization and simulation of mechanical behavior of 6063 aluminum alloy thin-walled tubes. Advanced Materials Reacearch. 2011;197-198:1500-1508. [Link] [DOI:10.4028/www.scientific.net/AMR.197-198.1500]
31. Gurson AL. Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology. 1977;99(1):2-15. [Link] [DOI:10.1115/1.3443401]
32. Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar. Acta Metallurgica. 1984;32(1):157-169. [DOI:10.1016/0001-6160(84)90213-X]
33. Tvergaard V. Influence of void nucleation on ductile shear fracture at a free surface. Journal of the Mechanics and Physics of Solids. 1982;30(6):399-425. [Link] [DOI:10.1016/0022-5096(82)90025-4]
34. Tvergaard V. On localization in ductile materials containing spherical voids. International Journal of Fracture. 1982;18(4):237-252. [Link]
35. Xu F, Zhao S, Han X. Use of a modified Gurson model for the failure behaviour of the clinched joint on Al6061 sheet. Fatigue & Fracture of Engineering Materials & Structures. 2014;37(3):335-348. [Link] [DOI:10.1111/ffe.12118]
36. Nahshon K, Hutchinson J. Modification of the Gurson model for shear failure. European Journal of Mechanics-A/Solids. 2008;27(1):1-17. [Link] [DOI:10.1016/j.euromechsol.2007.08.002]
37. Zhao R, Zhao S, Guo J, Zhong B, Li J. Experimental and numerical investigation on ductile fracture mechanism of aluminium alloy using new modified model. Materials Science and Technology. 2015;31(3):303-309. [Link] [DOI:10.1179/1743284714Y.0000000519]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.