Volume 20, Issue 4 (April 2020)                   Modares Mechanical Engineering 2020, 20(4): 863-876 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sayah Badkhor M, Mirzababaie Mostofi T, Babaei H. Dynamic Response of Metal Powder Subjected to Low-Velocity Impact Loading: Experimental Investigation and Optimization using Response Surface Methodology. Modares Mechanical Engineering 2020; 20 (4) :863-876
URL: http://mme.modares.ac.ir/article-15-36069-en.html
1- Mechanical Engineering Department, Electrical, Computer & Mechanical Engineering Faculty, University of Eyvanekey, Eyvanekey, Iran
2- Mechanical Engineering Department, Mechanical Engineering Faculty, University of Guilan, Rasht, Iran , ghbabaei@guilan.ac.ir
Abstract:   (3064 Views)
Manufacturing products using powder compaction is one of the most widely used methods in the industry. In this paper, dynamic compaction of aluminum powder under low-velocity impact loading was investigated using a drop hammer testing machine along with the optimization of effective parameters in this process. In this series of experiments, the green density and green strength of compacted products were measured. The response surface methodology was used to study the influential parameters in the powder compaction process. In this method, the effects of independent parameters including the grain particle size, the hammer mass, and the standoff distance of the hammer on the green density and green strength were evaluated. In the current study, two separate analyses were performed for each output response and the obtained results were summarized in ANOVA tables. The results showed that the p-value for the model is less than 0.05, which means that the model is significant. The values of R2 for the green density and green strength are equal to 0.9956 and 0.9912, respectively. The results of the optimization section indicate that the optimum case, the maximum green density as well as green strength at the same time, occurs when the grain particle size, the hammer mass and the standoff distance of the hammer have the maximum values. The factors o standoff distance of hammer and grain particle size have the highest and least effect on responses.
 
Full-Text [PDF 1907 kb]   (2000 Downloads)    
Article Type: Original Research | Subject: Metal Forming
Received: 2019/09/1 | Accepted: 2019/09/24 | Published: 2020/04/17

References
1. Babaei H, Mostofi TM, Namdari-Khalilabad M, Alitavoli M, Mohammadi K. Gas mixture detonation method, a novel processing technique for metal powder compaction: Experimental investigation and empirical modeling. Powder Technology. 2017;315:171-181. [Link] [DOI:10.1016/j.powtec.2017.04.006]
2. Alitavoli M, Babaei H, Mahmoudi A, Golbaf A, Mirzababaie Mostofi T. Experimental and analytical study of effective factors on compaction process of aluminium powder under the impact load by low speed. Modares Mechanical Engineering. 2015;15(7):22-30. [Persian] [Link]
3. Babaei H, Mirzababaie Mostofi T, Alitavoli M, Namdari M. Experimental investigation and a model presentation for predicting the behavior of metal and alumina powder compaction under impact loading. Modares Mechanical Engineering. 2015;15(5):357-366. [Persian] [Link]
4. Alitavoli M, Khaleghi E, Babaei H, Mirzababaie Mostofi T, Namazi N, editors. Modeling and prediction of metallic powder behavior in explosive compaction process by using genetic programming method based on dimensionless numbers. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2019;233(2):195-201. [Link] [DOI:10.1177/0954408918761223]
5. Al-Qureshi HA, Galiotto A, Klein AN. On the mechanics of cold die compaction for powder metallurgy. Journal of Materials Processing Technology. 2005;166(1):135-143. [Link] [DOI:10.1016/j.jmatprotec.2004.08.009]
6. Yan Z, Chen F, Cai Y. High-velocity compaction of titanium powder and process characterization. Powder Technology. 2011;208(3):596-599. [Link] [DOI:10.1016/j.powtec.2010.12.026]
7. Berg S, Jonsén P, Häggblad HÅ. Experimental characterisation of CaCO3 powder mix for high-pressure compaction modelling. Powder Technology. 2010;203(2):198-205. [Link] [DOI:10.1016/j.powtec.2010.05.009]
8. Berg S, Jonsén P, Häggblad HÅ. Experimental characterization of CaCO3 powder for use in compressible gaskets up to ultra-high pressure. Powder Technology. 2012;215-216:124-131. [Link] [DOI:10.1016/j.powtec.2011.09.035]
9. Berg S, Marklund P, Häggblad HÅ, Jonsén P. Frictional behaviour of CaCO3 powder compacts. Powder Technology. 2012;228:429-434. [Link] [DOI:10.1016/j.powtec.2012.06.005]
10. Poquillon D, Baco-Carles V, Tailhades Ph, Andrieu E. Cold compaction of iron powders-relations between powder morphology and mechanical properties: Part II. Bending tests: Results and analysis. Powder Technology. 2002;126(1):75-84. [Link] [DOI:10.1016/S0032-5910(02)00035-9]
11. Stasiak M, Tomas J, Molenda M, Rusinek R, Mueller P. Uniaxial compaction behaviour and elasticity of cohesive powders. Powder Technology. 2010;203(3):482-488. [Link] [DOI:10.1016/j.powtec.2010.06.010]
12. Crawford R, Paul D. Radial and axial die pressures during solid phase compaction of polymeric powders. European Polymer Journal. 1981;17(10):1023-1028. [Link] [DOI:10.1016/0014-3057(81)90022-7]
13. Kadhim KMJ, Alwan AA, Abed IJ. Simulation of cold die compaction Alumina powder. STM Journals. 2011;1(1):1-21. [Link]
14. Martin CL, Bouvard D, Shima S. Study of particle rearrangement during powder compaction by the discrete element method. Journal of the Mechanics and Physics of Solids. 2003;51(4):667-693. [Link] [DOI:10.1016/S0022-5096(02)00101-1]
15. Azhdar B, Stenberg B, Kari L. Development of a high-velocity compaction process for polymer powders. Polymer Testing. 2005;24(7):909-919. [Link] [DOI:10.1016/j.polymertesting.2005.06.008]
16. Murakoshi Y, Boey F, Sano T. AlLi alloy composites using a dynamic shock compaction technique. Journal of Materials Processing Technology. 1993;38(1-2):351-360. [Link] [DOI:10.1016/0924-0136(93)90207-M]
17. Wang JZ, Qu X, Yin H, Yi MJ, Yuan XJ. High velocity compaction of ferrous powder. Powder Technology. 2009;192(1):131-136. [Link] [DOI:10.1016/j.powtec.2008.12.007]
18. Hu RL, Yeung MR, Lee CF, Wang SJ. Mechanical behavior and microstructural variation of loess under dynamic compaction. Engineering Geology. 2001;59(3-4):203-217. [Link] [DOI:10.1016/S0013-7952(00)00074-0]
19. Mamalis AG, Vottea IN, Manolakos DE. On the modelling of the compaction mechanism of shock compacted powders. Journal of Materials Processing Technology. 2001;108(2):165-178. [Link] [DOI:10.1016/S0924-0136(00)00748-2]
20. Shoaib M, Kari L, Azhdar B. Simulation of high-velocity compaction process with relaxation assists using the discrete element method. Powder Technology. 2012;217:394-400. [Link] [DOI:10.1016/j.powtec.2011.10.054]
21. Khoei AR, Biabanaki SOR, Parvaneh SM. Dynamic modeling of powder compaction processes via a simple contact algorithm. International Journal of Mechanical Sciences. 2012;64(1):196-210. [Link] [DOI:10.1016/j.ijmecsci.2012.07.001]
22. Khoei AR, Keshavarz Sh, Khaloo AR. Modeling of large deformation frictional contact in powder compaction processes. Applied Mathematical Modelling. 2008;32(5):775-801. [Link] [DOI:10.1016/j.apm.2007.02.017]
23. Koynov A, Romanski F, Cuitiño AM. Effects of particle size disparity on the compaction behavior of binary mixtures of pharmaceutical powders. Powder Technology. 2013;236:5-11. [Link] [DOI:10.1016/j.powtec.2012.07.046]
24. Sinka I, Cocks A. Constitutive modelling of powder compaction-II. Evaluation of material data. Mechanics of Materials. 2007;39(4):404-416. [Link] [DOI:10.1016/j.mechmat.2006.09.002]
25. Press WH, Flannery BP, Teukolsky Sa, Vetterling WT. Numerical recipes in Fortran in C: The art of scientific computing. 2nd Edition. Cambridge: Cambridge University Press; 1992. [Link]
26. Babaei H, Darvizeh A, Alitavoli M, Mirzababaie Mostofi T. Experimental and analytical investigation into plastic deformation of circular plates subjected to hydrodynamic loading. Modares Mechanical Engineering. 2015;15(2):305-312. [Persian] [Link]
27. Babaei H, Mirzababaie Mostofi T, Alitavoli M. Experimental study and analytical modeling for inelastic response of rectangular plates under hydrodynamic loads. Modares Mechanical Engineering. 2015;15(4):361-368. [Persian] [Link]
28. Babaei H, Mirzababaie Mostofi T, Alitavoli M. Experimental and theoretical study of large deformation of rectangular plates subjected to water hammer shock loading. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2017;231(3):490-496. [Link] [DOI:10.1177/0954408915611055]
29. Jamali A, Babaei H, Nariman-Zadeh N, Ashraf Talesh SH, Mirzababaie Mostofi T. Multi-objective optimum design of ANFIS for modelling and prediction of deformation of thin plates subjected to hydrodynamic impact loading. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2016 July. [Link] [DOI:10.1177/1464420716660332]
30. Babaei H, Mirzababaie Mostofi T, Alitavoli M, Namazi N, Rahmanpoor A. Dynamic compaction of cold die Aluminum powders. Geomechanics and Engineering. 2016;10(1):109-124. [Link] [DOI:10.12989/gae.2016.10.1.109]
31. Babaei H, Mirzababaie Mostofi T, Alitavoli M. Study on the response of circular thin plate under low velocity impact. Geomechanics and Engineering. 2015;9(2):207-218. [Link] [DOI:10.12989/gae.2015.9.2.207]
32. Babaei H, Mirzababaie Mostofi T, Armoudli E. On dimensionless numbers for the dynamic plastic response of quadrangular mild steel plates subjected to localized and uniform impulsive loading. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2016;231(5):939-950. [Link] [DOI:10.1177/0954408916650713]
33. Mirzababaie Mostofi T, Babaei H, Alitavoli M. Theoretical analysis on the effect of uniform and localized impulsive loading on the dynamic plastic behaviour of fully clamped thin quadrangular plates. Thin-Walled Structures. 2016;109:367-376. [Link] [DOI:10.1016/j.tws.2016.10.009]
34. Babaei H, Mirzababaie Mostofi T, Alitavoli M, Darvizeh A. Empirical modelling for prediction of large deformation of clamped circular plates in gas detonation forming process. Experimental Techniques. 2016;40(6):1485-1494. [Link] [DOI:10.1007/s40799-016-0063-3]
35. Babaei H, Mirzababaie Mostofi T. New dimensionless numbers for deformation of circular mild steel plates with large strains as a result of localized and uniform impulsive loading. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2016;234(2):231-245. [Link] [DOI:10.1177/1464420716654195]
36. Mirzababaie Mostofi T, Babaei H, Alitavoli M, Lu G, Ruan D. Large transverse deformation of double-layered rectangular plates subjected to gas mixture detonation load. International Journal of Impact Engineering. 2019;125:93-106. [Link] [DOI:10.1016/j.ijimpeng.2018.11.005]
37. Babaei H, Mirzababaie Mostofi T, Alitavoli M. Experimental investigation and analytical modelling for forming of circular-clamped plates by using gases mixture detonation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2015 October. [Link] [DOI:10.1177/0954406215614336]
38. Mirzababaie Mostofi T, Babaei H, Alitavoli M, Hosseinzadeh S. On dimensionless numbers for predicting large ductile transverse deformation of monolithic and multi-layered metallic square targets struck normally by rigid spherical projectile. Thin-Walled Structures. 2017;112:118-124. [Link] [DOI:10.1016/j.tws.2016.12.014]
39. Babaei H, Mirzababaie Mostofi T, Alitavoli M. Experimental and analytical investigation into large ductile transverse deformation of monolithic and multi-layered metallic square targets struck normally by rigid spherical projectile. Thin-Walled Structures. 2016;107:257-265. [Link] [DOI:10.1016/j.tws.2016.06.013]
40. Rezasefat M, Mirzababaie Mostofi T, Ozbakkaloglu T. Repeated localized impulsive loading on monolithic and multi-layered metallic plates. Thin-Walled Structures. 2019;144:106332. [Link] [DOI:10.1016/j.tws.2019.106332]
41. Rezasefat M, Mirzababaie Mostofi T, Babaei H, Ziya-Shamami M, Alitavoli M. Dynamic plastic response of double-layered circular metallic plates due to localized impulsive loading. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2019;233(7):1449-1471. [Link] [DOI:10.1177/1464420718760640]
42. Golmakani H, Moradi Besheli S, Mazdak S, Sharifi E. Experimental and numerical investigation important parameters in deep drawing square sections two layers sheet with rubber matrix. Modares Mechanical Engineering. 2016;16(2):79-87. [Persian] [Link]
43. Bigdeli A, Damghani Nouri M. Experimental and numerical analysis and multi-objective optimization of quasi-static compressive test on thin-walled cylindrical with internal networking. Mechanics of Advanced Materials and Structures. 2018;26(19):1644-1660. [Link] [DOI:10.1080/15376494.2018.1444231]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.