Volume 20, Issue 7 (July 2020)                   Modares Mechanical Engineering 2020, 20(7): 1719-1730 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sepehry N, Ehsani M, Shamshirsaz M, Sadighi M. Contact Acoustic Nonlinearity Identification via Online Vibro-Acoustic Modulation Technique. Modares Mechanical Engineering 2020; 20 (7) :1719-1730
URL: http://mme.modares.ac.ir/article-15-37373-en.html
1- Mechanical & Mechatronic Engineering Faculty, Shahrood University of Technology, Shahrood, Iran , naser.sepehry@gmail.com
2- New Technologies Research Center (NTRC), Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
3- Mechanical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
Abstract:   (1723 Views)
Employing nonlinear dynamic signature of the host structure for early damage detection and remaining useful life estimation purposes, is an emerging idea in the area of piezoelectric patches based structural health monitoring. Clamped support loosening is one of the defects that not only may cause disorder in system’s functioning, but also obstruct damage identification process through distorting the signals. In this study, support loosening induced contact acoustic nonlinearity (CAN) behavior was monitored by vibro-acoustic modulation (VAM) technique. Using miniaturized PZT patches with the capability to be installed on the host structure permanently for both pump and probe actuation as well as sensing the modulated signal, enabled online monitoring via VAM technique. An appropriate filter was designed to eliminate the unintentionally excited natural frequencies and to reveal the sidebands. In this study, the sensitivity of modulation strength to the pump excitation frequency was also investigated. According to the results, appearance of sidebands around the central probe frequency is an appropriate indicator for CAN identification. In order to study the mechanism of modulation phenomenon, a coupled field electromechanical finite element (FE) model was developed. Proper matching of the numerical and experimental results indicates sufficient accuracy of the developed FE model and its potential to predict the modulation behavior.
Full-Text [PDF 656 kb]   (645 Downloads)    
Article Type: Original Research | Subject: Non Destructive Test
Received: 2019/10/14 | Accepted: 2020/05/3 | Published: 2020/07/20

1. Chandaran N, Martinez-Sanchez D, Soutis C, Gresil M. Early damage detection in composites by distributed strain and acoustic event monitoring. Procedia Engineering. 2017;188:88-95. [Link] [DOI:10.1016/j.proeng.2017.04.515]
2. Lissenden CJ, Liu Y, Rose JL. Use of non-linear ultrasonic guided waves for early damage detection. Insight-Non-Destructive Testing and Condition Monitoring. 2015;57(4):206-211. [Link] [DOI:10.1784/insi.2015.57.4.206]
3. Achenbach JD. Structural health monitoring-What is the prescription?. Mechanics. Research Communications. 2009;36(2):137-142. [Link] [DOI:10.1016/j.mechrescom.2008.08.011]
4. Bond LJ. Through the looking glass: the future for NDE?. In AIP Conference Proceedings. 2014;1581(1):21-35. [Link] [DOI:10.1063/1.4864798]
5. Sepehry N, Shamshirsaz M, Bastani A. Experimental and theoretical analysis in impedance-based structural health monitoring with varying temperature. Structural Health Monitoring. 2010;10(6):573-585. [Link] [DOI:10.1177/1475921710388338]
6. Bastani A, Amindavar H, Shamshirsaz M, Sepehry N. Identification of temperature variation and vibration disturbance in impedance-based structural health monitoring using piezoelectric sensor array method. Structural Health Monitoring. 2012;11(3):305-314. [Link] [DOI:10.1177/1475921711427486]
7. Van Den Abeele KA, Johnson PA, Sutin A. Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: Nonlinear wave modulation spectroscopy (NWMS). Research Nondestructive Evaluation. 2000;12(1):17-30. https://doi.org/10.1080/09349840009409646 https://doi.org/10.1080/09349840009409647 [Link] [DOI:10.1080/09349840008968159]
8. Duffour P, Morbidini M, Cawley P. A study of the vibro-acoustic modulation technique for the detection of cracks in metals.The Journal of the Acoustical Society of America. 2006;119(3):1463. [Link] [DOI:10.1121/1.2161429]
9. Ostrovsky LA, Johnson PA. Dynamic nonlinear elasticity in geo materials. Rivista del Nuovo Cimento della Societa Italiana di Fisica. 2001;24(7):1-46. [Link]
10. Sepehry N, Bakhtiari-Nejad F, Shamshirsaz M. Thermo-electro mechanical impedance based structural health monitoring: Euler-bernoulli beam modeling. AUT Journal of Modeling and Simulation. 2017;49(2):143-152. [Link]
11. Matlack KH, Kim J-Y, Jacobs LJ, Qu J. Review of second harmonic generation measurement techniques for material state determination in metals. Journal of Nondestructive Evaluation. 2015;34(1):273. [Link] [DOI:10.1007/s10921-014-0273-5]
12. Klepka A, Staszewski WJ, Jenal R, Szwedo M, Iwaniec J, Uhi T. Nonlinear acoustics for fatigue crack detection experimental investigations of vibro-acoustic wave modulations. Structural Health Monitoring. 2011;11(2):197-211 [Link] [DOI:10.1177/1475921711414236]
13. Guyer RA, Johnson PA. Nonlinear mesoscopic elasticity: The complex behaviour of rocks, soil, concrete. Physics Special Topics; 2009. [Link] [DOI:10.1002/9783527628261]
14. Guyer RA, Johnson PA. Nonlinear mesoscopic elasticity: Evidence for a new class of materials. Physics Today. 1999;52(4):30-36. [Link] [DOI:10.1063/1.882648]
15. Zaitsev VY, Gusev V, Castagnede B. Observation of the luxemburg-gorky effect for elastic waves. Ultrasonics. 2002;40(1-8):627-631. [Link] [DOI:10.1016/S0041-624X(02)00187-7]
16. Zaitsev V, Gusev V, Castagnede B. Thermoelastic mechanism for logarithmic slow dynamics and memory in elastic wave interactions with individual cracks. Physics Review Letters. 2003;90(7):75501. [Link] [DOI:10.1103/PhysRevLett.90.075501]
17. Solodov IY, Korshak BA. Instability, chaos, and memory in acoustic-wave-crack interaction. Physics Review Letters. 2001;88(1):14303. [Link] [DOI:10.1103/PhysRevLett.88.014303]
18. Meo M, Polimeno U, Zumpano G. Detecting damage in composite material using nonlinear elastic wave spectroscopy methods. Applied Composite Materials. 2008;15(3):115-126. [Link] [DOI:10.1007/s10443-008-9061-7]
19. Jhang K-Y. Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: A review. International Journal of Precision Engineering and Manufacturing. 2009;10(1):123-135. [Link] [DOI:10.1007/s12541-009-0019-y]
20. Sessler JG, Weiss V. Crack detection apparatus and method [Internet]. Washington: Department of the navy washington dc; 1975 [Cited Unknown Year Unknown Month Unknown Day]. Available from: https://patents.google.com/patent/US3867836 [Link]
21. Korotkov AS, Sutin AM. Modulation of ultrasound by vibrations in metal constructions with cracks. Acoustical Letters. 1994;18(4):59-62. [Link]
22. Zhang Z, Xu H, Liao Y, Su Z, Xiao Y. Vibro-acoustic modulation (VAM)-inspired structural integrity monitoring and its applications to bolted composite joints. Composite Structures. 2017;176:505-515. [Link] [DOI:10.1016/j.compstruct.2017.05.043]
23. Zaitsev VY, Sutin AM, Belyaeva IY, Nazarov VE. Nonlinear interaction of acoustical waves due to cracks and its possible usage for cracks detection. Journal of Vibration and Control. 1995;1(3):335-344. [Link] [DOI:10.1177/107754639500100305]
24. Ooijevaar T, Rogge MD, Warnet L, Akkerman R, Tinga T. Vibro-acoustic modulation based damage identification in a composite skin-stiffener structure. Structural Health Monitoring. 2016;15(4):458-472. [Link] [DOI:10.1177/1475921716645107]
25. Delsanto PP, Scalerandi M. Modeling nonclassical nonlinearity, conditioning, and slow dynamics effects in mesoscopic elastic materials. Physical Review B. 2003;68(6):064107. [Link] [DOI:10.1103/PhysRevB.68.064107]
26. Solodov IY, Krohn N, Busse G. CAN: An example of nonclassical acoustic nonlinearity in solids. Ultrasonics. 2002;40(1-8):621-625. [Link] [DOI:10.1016/S0041-624X(02)00186-5]
27. Klepka A, Staszewski WJ, Jenal RB, Szwedo M, Iwaniec J, Uhl T. Nonlinear acoustics for fatigue crack detection-experimental investigations of vibro-acoustic wave modulations. Structural Health Monitoring. 2012;11(2):197-211. [Link] [DOI:10.1177/1475921711414236]
28. Donskoy DM, Sutin AM. Vibro-acoustic modulation nondestructive evaluation technique. Journal of Intelligent Material Systems Structures. 1998;9(9):765-771. [Link] [DOI:10.1177/1045389X9800900909]
29. Didenkulov IN, Sutin AM, Ekimov AE, Kazakov VV. Interaction of sound and vibrations in concrete with cracks. In AIP Conference Proceedings. 2000;524(1):279-282. [Link] [DOI:10.1063/1.1309222]
30. Van Den Abeele KE-A, Carmeliet J, Ten Cate JA, Johnson PA. Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, Part II: Single-mode nonlinear resonance acoustic spectroscopy. Research in Nondestructive Evaluation. 2000;12(1):31-42. https://doi.org/10.1080/09349840009409647 [Link] [DOI:10.1080/09349840008968160]
31. Ballad EM, Vezirov SY, Pfleiderer K, Solodov IY, Busse G. Nonlinear modulation technique for NDE with air-coupled ultrasound. Ultrasonics. 2004;42(1-9):1031-1036. [Link] [DOI:10.1016/j.ultras.2003.12.022]
32. Pieczonka L, Ukowski P, Klepka A, Staszewski WJ, Uhl T, Aymerich F. Impact damage detection in light composite sandwich panels using piezo-based nonlinear vibro-acoustic modulations. Smart Materials and Structures. 2014;23(10):105021. [Link`] [DOI:10.1088/0964-1726/23/10/105021]
33. Lim HJ, Kim Y, Koo G, Yang S, Sohn S, Bae I-H, et al. Development and field application of a nonlinear ultrasonic modulation technique for fatigue crack detection without reference data from an intact condition. Smart Materials and Structures. 2016;25(9):1-14. [Link] [DOI:10.1088/0964-1726/25/9/095055]
34. Klepka A, Pieczonka L, Staszewski WJ, Aymerich F. Impact damage detection in laminated composites by non-linear vibro-acoustic wave modulations. Composites Part B: Engineering. 2014;65:99-108. [Link] [DOI:10.1016/j.compositesb.2013.11.003]
35. Parsons Z, Staszewski WJ. Nonlinear acoustics with low-profile piezoceramic excitation for crack detection in metallic structures. Smart Materials and Structures. 2006;15(4):1110. [Link] [DOI:10.1088/0964-1726/15/4/025]
36. Liu P, Sohn H, Kundu T, Yang S. Noncontact detection of fatigue cracks by laser nonlinear wave modulation spectroscopy (LNWMS). NDT & E International. 2014;66:106-116. [Link] [DOI:10.1016/j.ndteint.2014.06.002]
37. Lim HJ, Sohn H, Desimio MP, Brown K. Reference-free fatigue crack detection using nonlinear ultrasonic modulation under various temperature and loading conditions. Mechanical Systems and Signal Processing. 2014;45(2):468-478. [Link] [DOI:10.1016/j.ymssp.2013.12.001]
38. Donskoy D, Sutin A, Ekimov A. Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing. NDT & E International. 2001;34(4):231-238. [Link] [DOI:10.1016/S0963-8695(00)00063-3]
39. Aymerich F, Staszewski WJ. Experimental study of impact-damage detection in composite laminates using a cross-modulation vibro-acoustic technique. Structural Health Monitoring. 2010;9(6):541-553. [Link] [DOI:10.1177/1475921710365433]
40. Pieczonka L, Klepka A, Martowicz A, Staszewski WJ. Nonlinear vibroacoustic wave modulations for structural damage detection: an overview. Optical Engineering. 2015;55(1):11005. [Link] [DOI:10.1117/1.OE.55.1.011005]
41. Malfense Fierro GP, Meo M. Residual fatigue life estimation using a nonlinear ultrasound modulation method. Smart Materials and Structures. 2015;24(2):025040. [Link] [DOI:10.1088/0964-1726/24/2/025040]
42. Sepehry N, Shamshirsaz M, Bakhtiari Nejad F. Low‐cost simulation using model order reduction in structural health monitoring: Application of balanced proper orthogonal decomposition. Structural Control and Health Monitoring. 2017;24(11):e1994. [Link] [DOI:10.1002/stc.1994]
43. Sepehry N, Asadi S, Shamshirsaz M, Bakhtiari Nejad F. A new model order reduction method based on global kernel k -means clustering: Application in health monitoring of plate using Lamb wave propagation and impedance method. Structural Control and Health Monitoring. 2018;25(9):e2211. [Link] [DOI:10.1002/stc.2211]
44. Sepehry N, Bakhtiari-Nejad F, Shamshirsaz M. Discrete singular convolution and spectral finite element method for predicting electromechanical impedance applied on rectangular plates. Journal of Intelligent Material Systems and Structures. 2017;28(18):2473-2488. [Link] [DOI:10.1177/1045389X17689931]
45. Lee SE, Jin S, Hong J-W. Microcrack modeling and simulation for nonlinear wave modulation. Sensors Smart Structures Technologies Civil, Mechanical, and Aerospace Systems. 2016;9803:98033J. [Link] [DOI:10.1117/12.2219471]
46. Singh AK, Chen B-Y, Tan VBC, Tay T-E, Lee H-P. Finite element modeling of nonlinear acoustics/ultrasonics for the detection of closed delaminations in composites. Ultrasonics. 2017;74:89-98. [Link] [DOI:10.1016/j.ultras.2016.09.019]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.