1. Niinimaki T, Junila J, Jalovaara P. A proximal fixed anatomic femoral stem reduces stress shielding. International orthopaedics. 2001;25(2):85-88. [
Link] [
DOI:10.1007/s002640100241]
2. Marcolongo M, Ducheyne P, Garino J, Schepers E. Bioactive glass fiber/polymeric composites bond to bone tissue. Journal of Biomedical Materials Research. 1998;39(1):161-170.
https://doi.org/10.1002/(SICI)1097-4636(199801)39:1<161::AID-JBM18>3.0.CO;2-I [
Link] [
DOI:10.1002/(SICI)1097-4636(199801)39:13.0.CO;2-I]
3. Hench LL. The story of bioglass. Journal of Materials Science Materials in Medicine. 2006;17(11):967-978. [
Link] [
DOI:10.1007/s10856-006-0432-z]
4. Moghanian A, Firoozi S, Tahriri M. Synthesis and in vitro studies of sol-gel derived lithium substituted 58S bioactive glass. Ceramics International. 2017;43(15):12835-12843. [
Link] [
DOI:10.1016/j.ceramint.2017.06.174]
5. Lu HH, El-Amin SF, Scott KD, Laurencin CT. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Journal of Biomedical Materials Research Part A. 2003;64(3):465-474. [
Link] [
DOI:10.1002/jbm.a.10399]
6. - Ravarian R, Moztarzadeh F, Solati Hashjin M, Rabiee SM, Khoshakhlagh P, Tahriri M. Synthesis, characterization and bioactivity investigation of bioglass/hydroxyapatite composite. Ceramics International. 2010;36(1):291-297. [
Link] [
DOI:10.1016/j.ceramint.2009.09.016]
7. Vichery C, Nedelec JM. Bioactive glass nanoparticles: From synthesis to materials design for biomedical applications. Materials (Basel). 2016;9(4):288. [
Link] [
DOI:10.3390/ma9040288]
8. Moghanian A, Firoozi S, Tahriri M, Sedghi A. A comparative study on the in vitro formation of hydroxyapatite, cytotoxicity and antibacterial activity of 58S bioactive glass substituted by Li and Sr. Materials Science and Engineering: C. 2018;91:349-360. [
Link] [
DOI:10.1016/j.msec.2018.05.058]
9. Thompson ID, Hench LL. Mechanical properties of bioactive glasses, glass-ceramics and composites. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 1998;212(2):127-136. [
Link] [
DOI:10.1243/0954411981533908]
10. Ashuri M, Moztarzadeh F, Nezafati N, Ansari Hamedani A, Tahriri MR. Synthesis and evaluation of mechanical properties of hydroxyapatite/sol-gel derived bioactive glass particles composites. Journal of Advanced Materials In Engineering. 2012;31(1):57-72. [Persian] [
Link]
11. Malysheva AY, Beletskii BI, Vlasova EB. Structure and properties of composite materials for medical application. Glass and Ceramics. 2001;58(1):66-69. [
Link] [
DOI:10.1023/A:1010953632695]
12. Bertolla L, Chlup Z, Stratil L, Boccaccini AR, Dlouhý I. Effect of hybrid polymer coating of Bioglass® foams on mechanical response during tensile loading. Advances in Applied Ceramics. 2015;114:63-69. [
Link] [
DOI:10.1179/1743676115Y.0000000041]
13. Zhang K, Ma Y, Francis LF. Porous polymer/bioactive glass composites for soft‐to‐hard tissue interfaces. Journal of Biomedical Materials Research. 2002;61(4):551-563. [
Link] [
DOI:10.1002/jbm.10227]
14. Islam MT, Felfel RM, Abou Neel EA, Grant DM, Ahmed I, Hossain KMZ. Bioactive calcium phosphate-based glasses and ceramics and their biomedical applications: A review. Journal of Tissue Engineering. 2017;8: 2041731417719170. [
Link] [
DOI:10.1177/2041731417719170]
15. Stanciu G, Sandulescu I, Savu B, Stanciu S, Paraskevopoulos K, Chatzistavrou X, et al. Investigation of the hydroxyapatite growth on bioactive glass surface. Journal of Biomedical & Pharmaceutical Engineering. 2007;1(1):34-39. [
Link]
16. Wang M, Joseph R, Bonfield W. Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic particle size and morphology. Biomaterials. 1998;19(24):2357-2366. [
Link] [
DOI:10.1016/S0142-9612(98)00154-9]
17. Abu Bakar MS, Cheang P, Khor KA. Mechanical properties of injection molded hydroxyapatite-polyetheretherketone biocomposites. Composite Science and Technology. 2003;63(3-4):421-425. [
Link] [
DOI:10.1016/S0266-3538(02)00230-0]
18. Khang G, Lee HB, Park JB. Biocompatibility of polysulfone I. Surface modifications and characterizations. Bio-Medical Materials and Engineering. 1995;5(4):245-258. [
Link] [
DOI:10.3233/BME-1995-5405]
19. Teotia R, Verma SK, Kalita D, Singh AK, Dahe G, Bellare J. Porosity and compatibility of novel polysulfone-/vitamin E-TPGS-grafted composite membrane. Journal of Materials Science. 2017;52(20):12513-12523. [
Link] [
DOI:10.1007/s10853-017-1351-8]
20. Wang M, Bonfield W. Chemically coupled hydroxyapatite-polyethylene composites: Structure and properties. Biomaterials. 2001;22(11):1311-1320. [
Link] [
DOI:10.1016/S0142-9612(00)00283-0]
21. Liao CJ, Chen C-F, Chen J-H, Chiang S-F, Lin Y-J, Chang K-Y. Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method. Journal of Biomedical Materials Research. 2001;59(4):676-681. [
Link] [
DOI:10.1002/jbm.10030]
22. Oréfice R, Clark A, West J, Brennan A, Hench L. Processing, properties, and in vitro bioactivity of polysulfone‐bioactive glass composites. Journal of Biomedical Materials Research. 2007;80(3):565-580. [
Link] [
DOI:10.1002/jbm.a.30948]
23. Roohani-Esfahani S-I, Newman P, Zreiqat H. Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects. Scientific Reports. 2016;6:19468. [
Link] [
DOI:10.1038/srep19468]
24. Liu X, Rahaman MN, Hilmas GE, Bal BS. Mechanical properties of bioactive glass (13-93) scaffolds fabricated by robotic deposition for structural bone repair. Acta Biomaterialia. 2013;9(6):7025-7034. [
Link] [
DOI:10.1016/j.actbio.2013.02.026]
25. Broek D. Elementary engineering fracture mechanics. Berlin: Springer Science & Business Media; 2012. [
Link]
26. Turner CE. Fracture toughness and specific fracture energy: A re-analysis of results. Materials Science and Engineering. 1973;11(5):275-282. [
Link] [
DOI:10.1016/0025-5416(73)90092-X]
27. Meyers MA, Kumar Chawla K. Mechanical behavior of materials. Cambridge: Cambridge University Press; 2008. [
Link] [
DOI:10.1017/CBO9780511810947]
28. Hashemi SH, Kymyabakhsh M. Experimental and numerical determination of fracture toughness in gas pipeline steel of grade API X65. Amirkabir Journal of Mechanical Engineering. 2013;45(2):1-9. [Persian] [
Link]
29. ASTM D5045-14. Standard test methods for plane-strain fracture toughness and strain energy release rate of plastic materials [Internet]. West Conshohocken: ASTM International; 2014 [Unknown Cited]. Available from: https://www.astm.org/Standards/D5045.htm [
Link]
30. Rajabi H. Experimental and numerical investigations of crack propagation in dragonfly wing veins. Amirkabir Journal of Mechanical Engineering. 2016;48(2):179-186. [Persian] [
Link]
31. Motamedi D, Mohammadi S. Fracture analysis of composites by time independent moving-crack orthotropic XFEM. International Journal of Mechanical Sciences. 2012;54(1):20-37. [
Link] [
DOI:10.1016/j.ijmecsci.2011.09.004]
32. Feulvarch E, Fontaine M, Bergheau J-M. XFEM investigation of a crack path in residual stresses resulting from quenching. Finite Elements in Analysis and Design. 2013;75:62-70. [
Link] [
DOI:10.1016/j.finel.2013.07.005]
33. Ghaffari D, Rash Ahmadi S, Shabani F. XFEM simulation of a quenched cracked glass plate with moving convective boundaries. Comptes Rendus Mécanique. 2016;344(2):78-94. [
Link] [
DOI:10.1016/j.crme.2015.09.007]
34. Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering. 1999;45(5):601-620.
https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S [
Link] [
DOI:10.1002/(SICI)1097-0207(19990620)45:53.0.CO;2-S]
35. Pathak H, Singh A, Singh IV. Numerical simulation of bi-material interfacial cracks using EFGM and XFEM. International Journal of Mechanics and Materials in Design. 2012;8(1):9-36. [
Link] [
DOI:10.1007/s10999-011-9173-3]
36. Entezari A, Roohani Esfahani I, Zhang Z, Zreiqat H, Dunstan CR, Li Q. Fracture behaviors of ceramic tissue scaffolds for load bearing applications. Scientific Reports. 2016;6:28816. [
Link] [
DOI:10.1038/srep28816]
37. Khoei AR. Extended finite element method: Theory and applications. Hoboken: Wiley; 2015. [
Link] [
DOI:10.1002/9781118869673]
38. Rice JR. A path independent integral and the approximate analysis of strain concentrations by notches and cracks. Journal of Applied Mechanics. 1968;35(2):379-386. [
Link] [
DOI:10.1115/1.3601206]
39. Sethian JA. A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci U S A. 1996;93(4):1591-1595. [
Link] [
DOI:10.1073/pnas.93.4.1591]
40. Fett T. Stress intensity factors and weight functions for special crack problems. 1998 January. Report Number: FZKA-6025. [
Link]
41. Wolfram U, Schwiedrzik J. Post-yield and failure properties of cortical bone. Bonekey Reports. 2016;5:829. [
Link] [
DOI:10.1038/bonekey.2016.60]
42. Gales RDR, Mills NJ. The plane starin fracture of polysulfone. Engineering Fracture Mechanics. 1974;6(1):93-98. [
Link] [
DOI:10.1016/0013-7944(74)90049-6]
43. Krishnan V, Lakshmi T. Bioglass: A novel biocompatible innovation. Journal of Advanced Pharmaceutical Technology and Research. 2013;4(2):78-83. [
Link] [
DOI:10.4103/2231-4040.111523]
44. Sansone V, Pagani D, Melato M. The effects on bone cells of metal ions released from orthopaedic implants: A review. Clinical Cases in Mineral and Bone Metabolism. 2013;10(1):34-40. [
Link] [
DOI:10.11138/ccmbm/2013.10.1.034]
45. Roland L, Backhaus S, Grau M, Matena J, Teske M, Beyerbach M, et al. Evaluation of functionalized porous titanium implants for enhancing angiogenesis in vitro. materials. Materials. 2016;9(4):304. [
Link] [
DOI:10.3390/ma9040304]
46. Bellucci D, Sola A, Anesi A, Salvatori R, Chiarini L, Cannillo V. Bioactive glass/hydroxyapatite composites: Mechanical properties and biological evaluation. Materials Science and Engineering: C. 2015;51:196-205. [
Link] [
DOI:10.1016/j.msec.2015.02.041]