Volume 20, Issue 6 (June 2020)                   Modares Mechanical Engineering 2020, 20(6): 1647-1660 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amiri A, Shojaeefard M, Qasemian A, Samiezaeh S. Investigation of Wall Temperature Effect on Flame Quenching Distance during the Warm-up Period of an SI Internal Combustion Engine. Modares Mechanical Engineering 2020; 20 (6) :1647-1660
URL: http://mme.modares.ac.ir/article-15-37644-en.html
1- Powertrain System Department, Automotive Engineering Faculty, Iran University of Science & Technology, Tehran, Iran
2- Powertrain System Department, Automotive Engineering Faculty, Iran University of Science & Technology, Tehran, Iran , qasemian@iust.ac.ir
Abstract:   (2638 Views)
The internal combustion engine’s warm-up period is one of the most important sources of emissions, especially unburned hydrocarbons (UHC). Due to the low temperature of combustion chamber wall during the warm-up period, the flame is quenched rapidly near the walls and piston surface and the air-fuel mixture in the vicinity of the wall does not burn and leave the combustion chamber unburned which increases UHC emissions of internal combustion engines during the warm-up period. In the current study, using MATLAB R2018b software and numerical solution methods, a code is developed based on XU7 engine data to determine the effect of wall temperature on the flame quenching distance. The results showed that by increasing the cylinder wall temperature, flame quenching distance during the engine warm-up period, for two cases of constant and pressure based Peclet number, was decreased by 46 and 22%, respectively. The results also indicated that the flame quenching distance had a downward logarithmic behavior over time, which is the opposite of the thermal behavior of the combustion chamber walls during the engine warm-up period, which is an upward logarithmic behavior.
Full-Text [PDF 861 kb]   (1934 Downloads)    
Article Type: Original Research | Subject: Heat & Mass Transfer
Received: 2019/10/26 | Accepted: 2019/04/1 | Published: 2020/06/20

References
1. Keshavarz Valian A, Qasemian Moghaddam A. Heat transfer in internal combustion engine. Tehran: K.N. Toosi University Press; 2018. [Link]
2. Pulkrabek WW. Engineering fundamentals of the internal combustion engine. 2nd Edition. London: Pearson; 2003. [Link] [DOI:10.1115/1.1669459]
3. Min K, Cheng W, Heywood J. The effects of crevices on the engine-out hydrocarbon emissions in SI engines. Warrendale: SAE International; 1994. pp. 371-385. [Link] [DOI:10.4271/940306]
4. Cheng WK, Hamrin D, John B, Heywood J, Hochgreb S, Min K, et al. An overview of hydrocarbon emissions mechanisms in spark-ignition engines [Internet]. Warrendale: SAE International; 1993 [Unknown cited]. Available from: https://www.sae.org/publications/technical-papers/content/932708/. [Link] [DOI:10.4271/932708]
5. Sher E. Handbook of air pollution from internal combustion engines: Pollutant formation and control. Cambridge: Academic Press; 1998. [Link]
6. Borrmeister J, Hubner W. Influence of the combustion chamber shape on HC emissions and the combustion process. MTZ-Motortechnische Zeitschrift. 1997;58(7):408-415. [Germany] [Link]
7. Hassel E, Harndorf H, Magnor O. Possibilities for predicting unburned hydrocarbons in a direct injection gasoline engine [Dissertation]. Rostock: University of Rostock; 2010. [Germany] [Link]
8. Suckart D, Linse D. Modelling turbulent premixed flame-wall interactions including flame quenching and near-wall turbulence based on a level-set flamelet approach. Combustion and Flame. 2018;190:50-64. [Link] [DOI:10.1016/j.combustflame.2017.11.005]
9. Heywood J. Internal combustion engine fundamentals. 1st Edition. New York: McGraw-Hill Education; 1988. [Link]
10. Fan X, Che Z, Wang T, Lu Z. Numerical investigation of boundary layer flow and wall heat transfer in a gasoline direct-injection engine. International Journal of Heat and Mass Transfer. 2018;120:1189-1199. [Link] [DOI:10.1016/j.ijheatmasstransfer.2017.09.089]
11. Steinhilber G, Bykov V, Maas U. REDIM reduced modeling of flame-wall-interactions: Quenching of a premixed methane/air flame at a cold inert wall. Proceedings of the Combustion Institute. 2017;36(1):655-661. [Link] [DOI:10.1016/j.proci.2016.08.057]
12. Jainski Ch, Rißmann M, Böhm B, Dreizler A. Experimental investigation of flame surface density and mean reaction rate during flame-wall interaction. Proceedings of the Combustion Institute. 201736(2):1827-1834. [Link] [DOI:10.1016/j.proci.2016.07.113]
13. Friedman R, Johnston WC. The wall quenching of laminar propane flames as a function of pressure, temperature, and airfuel ratio flatness-based embedded control of air-fuel ratio in combustion engines. Journal of Applied Physics 1950;791(1950):10-15. [Link] [DOI:10.1063/1.1699760]
14. Friedman R, Johnston WC. Iso-Octane Benzene and Ethyl Ether Flames. The Journal of Chemical Physics. 1952;20(5):919-920. [Link] [DOI:10.1063/1.1700600]
15. Goolsby AD, Haskell WW. Flame-quench distance measurements in a CFR engine. Combustion and Flame. 1976;26:105-114. [Link] [DOI:10.1016/0010-2180(76)90060-2]
16. Amano T, Okamoto K. Unburned hydrocarbons emission source from engines [Internet]. Canada: SAE Technical Paper; 2001 [Unknown cited]. Available from: https://www.sae.org/publications/technical-papers/content/2001-01-3528/ [Link] [DOI:10.4271/2001-01-3528]
17. J.Lyford-PikeJohn E, Heywood B. Thermal boundary layer thickness in the cylinder of a spark-ignition engineEpaisseur de couche limite thermique dans un cylindre avec bougie de moteur a explosionDicke der thermischen grenzschicht im zylinder eines otto-motors. International Journal of Heat and Mass Transfer. 1984;27(10):1873-1878. [Link] [DOI:10.1016/0017-9310(84)90169-8]
18. Shigeharu K, Takeshi O. Measurements of temperature distribution in thermal boundary layer and quenching distance at combustion chamber of internal combustion engine. Transactions of the Japan Society of Mechanical Engineers. Series B (Web). 2011;77(784):2468-2477. [Japanese] [Link] [DOI:10.1299/kikaib.77.2468]
19. Sotton J, Boust B, Labuda SA, Bellenoue M. Head-on quenching of transient laminar flame: Heat flux and quenching distance measurements. Combustion Science and Technology. 2005;177(7):1305-1322. [Link] [DOI:10.1080/00102200590950485]
20. Boust B, Sotton J, Labuda SA, Bellenoue M. A thermal formulation for single-wall quenching of transient laminar flames. Combustion and Flame. 2007;149(3):286-294. [Link] [DOI:10.1016/j.combustflame.2006.12.019]
21. Turcios MA. Effects of cold wall quenching on unburned hydrocarbon emissions from a natural gas HPDI engine [Dissertation]. Vancouver: University of British Columbia; 2011. [Link]
22. Dorsch M, Neumann J, Hasse Ch. Application of a Phenomenological Model for the Engine-Out Emissions of Unburned Hydrocarbons in Driving Cycles. Journal of Energy Resources Technology. 2016;138(2):1-10. [Link] [DOI:10.1115/1.4031674]
23. Raine RR, Stone CR, Gould J. Modeling of nitric oxide formation in spark ignition engines with a multizone burned gas. Combustion and Flame. 1995;102(3):241-255. [Link] [DOI:10.1016/0010-2180(94)00268-W]
24. Ferguson CR, Kirkpatrick AT. Internal combustion engines: Applied thermosciences. 3rd Edition. Hoboken: Wiley; 2016. [Link]
25. Woschni G. A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine [Internet]. Canada: SAE Technical Paper; 1967 [Unknown cited] Available from: https://www.sae.org/publications/technical-papers/content/670931/. [Link] [DOI:10.4271/670931]
26. Samiezade S. A global model of engine heat transfer for reducing warm-up time using intelligent cooling. Tehran: Iran University of Science and Technology; 2018. [Link]
27. Lavoie GA. Correlations of combustion data for SI engine calculations-laminar flame speed, quench distance and global reaction rates [Internet]. Canada: SAE Technical Paper; 1978 [Unknown cited]. Available from: https://www.sae.org/publications/technical-papers/content/780229/ [Link] [DOI:10.4271/780229]
28. Yusoff A. CFD simulation for predicting combustion and pollutant formation in a homogeneous-charge spark-ignition engine [Internet]. San Francisco: Academia; 1998 [Unknown cited]. Available from: https://www.academia.edu/551019/CFD_simulation_for_predicting_combustion_and_pollutant_formation_in_a_homogeneous-charge_spark-ignition_engine [Link]
29. Mansouri SH, Heywood JB. Correlations for the viscosity and prandtl number of hydrocarbon-air combustion products. Combustion Science and Technology. 1980;23(5-6):251-256. [Link] [DOI:10.1080/00102208008952416]
30. Westbrook KCh, Adamczyk AA, Lavoie GA. A numerical study of laminar flame wall quenching. Combustion and Flame. 1981;40:81-99. [Link] [DOI:10.1016/0010-2180(81)90112-7]
31. Westbrook KCh, Dryer FL. Simplified reaction mechanisms for the oxidation of hydrocarbon fuel in flames. Combustion Science and Technology. 1981;27(1-2):31-43. [Link] [DOI:10.1080/00102208108946970]
32. Metghalchi M, Keck JC. Laminar burning velocity of propane-air mixtures at high temperature and pressure. Combustion and Flame. 1980;38:143-154. [Link] [DOI:10.1016/0010-2180(80)90046-2]
33. Metghalchi M, Keck JC. Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature. Combustion and Flame. 1982;48:191-210. [Link] [DOI:10.1016/0010-2180(82)90127-4]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.