Volume 20, Issue 7 (July 2020)                   Modares Mechanical Engineering 2020, 20(7): 1709-1717 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Barghi Jahromi M, Kalantar V, Abdolrezaie M. Experimental Study of Effect of Storage Phase Change Materials (PCM) on the Function of a Passive Solar Ventilator. Modares Mechanical Engineering 2020; 20 (7) :1709-1717
URL: http://mme.modares.ac.ir/article-15-38118-en.html
1- Faculty of Mechanical Engineering, Yazd University, Yazd, Iran
2- Faculty of Mechanical Engineering, Yazd University, Yazd, Iran , vkalantar@yazd.ac.ir
3- Department of Engineering, Yazd Branch, Yazd University, Yazd, Iran
Abstract:   (1615 Views)
In the current study, natural solar ventilation has been investigated aiming at reducing the consumption of fossil and thus, reducing greenhouse gas emissions in a hot and dry climate in which the behavior of various fluid variables (temperature, velocity, and flow rate) is considered in different conditions. Since solar radiation is not uniform throughout the day, passive solar ventilation is unstable. In this regard, the natural displacement flow in a solar ventilator with copper thermal absorber, double-glazed glass compartment to prevent thermal energy loss, as well as phase change materials for the storage of thermal energy has been investigated, experimentally. In the case of no phase change material, due to the creation of a suitable temperature difference, the panel has made the chimney effect possible for natural ventilation in some hours of the day, but in the early hours of the night, the temperature of the panel will be the same as the ambient temperature, and the chimney effect will not be available for proper ventilation. In a panel equipped with phase change materials, the system has acceptably been able to play an important role in reducing the temperature drop in the hours of the day with no solar radiation leading to a reliable air flow rate. In fact, the main purpose of using phase change materials in passive solar ventilation is the same effect, the use of excess energy in cases of energy shortages.
Full-Text [PDF 590 kb]   (670 Downloads)    
Article Type: Original Research | Subject: Renewable Energy
Received: 2019/11/25 | Accepted: 2020/04/26 | Published: 2020/07/20

1. Mokhtarian M, Tavakolipour H, Kalbasi Ashtari A. Effects of solar drying along with air recycling system on physicochemical and sensory properties of dehydrated pistachio nuts. LWT-Food Science and Technology. 2017;75:202-209. [Link] [DOI:10.1016/j.lwt.2016.08.056]
2. Mondal S. Phase change materials for smart textiles-an overview. Applied Thermal Engineering. 2008;28(11-12):1536-1550. [Link] [DOI:10.1016/j.applthermaleng.2007.08.009]
3. Turnpenny JR, Etheridge DW, Reay DA. Novel ventilation cooling system for reducing air conditioning in buildings. Applied Thermal Engineering. 2000;20(11):1019-1037. [Link] [DOI:10.1016/S1359-4311(99)00068-X]
4. Zhang YP, Lin KP, Yang R, Di HF, Jiang Y. Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings. Energy and Buildings. 2006;38(10):1262-1269. [Link] [DOI:10.1016/j.enbuild.2006.02.009]
5. Xiao W, Wang X, Zhang Y. Analytical optimization of interior PCM for energy storage in a lightweight passive solar room. Applied Energy. 2009;86(10):2013-2018. [Link] [DOI:10.1016/j.apenergy.2008.12.011]
6. Tyagi VV, Buddhi D. PCM thermal storage in buildings: A state of art. Renewable and Sustainable Energy Reviews. 2007;11(6):1146-1166. [Link] [DOI:10.1016/j.rser.2005.10.002]
7. Borreguero AM, Luz Sánchez M, Valverde JL, Carmona M, Rodríguez JF. Thermal testing and numerical simulation of gypsum wallboards incorporated with different PCMs content. Applied Energy. 2011;88(3):930-937. [Link] [DOI:10.1016/j.apenergy.2010.08.014]
8. Kuznik F, Virgone J, Noel J. Optimization of a phase change material wallboard for building use. Applied Thermal Engineering. 2008;28(11-12):1291-1298. [Link] [DOI:10.1016/j.applthermaleng.2007.10.012]
9. Arnault A, Mathieu-Potvin F, Gosselin L. Internal surfaces including phase change materials for passive optimal shift of solar heat gain. International Journal Thermal Sciences. 2010;49(11):2148-2156. [Link] [DOI:10.1016/j.ijthermalsci.2010.06.021]
10. Qureshi WA, Nair N-KC, Farid MM. Impact of energy storage in buildings on electricity demand side management. Energy Conversion Management. 2011;52(5):2110-2120. [Link] [DOI:10.1016/j.enconman.2010.12.008]
11. Heim D, Clarke JA. Numerical modelling and thermal simulation of PCM-gypsum composites with ESP-r. Energy and Buildings. 2004;36(8):795-805. [Link] [DOI:10.1016/j.enbuild.2004.01.004]
12. Afonso C, Oliveira A. Solar chimneys: Simulation and experiment. Energy and Buildings. 2000;32(1):71-79. [Link] [DOI:10.1016/S0378-7788(99)00038-9]
13. Bansal NK, Mathur R, Bhandari MS. Solar chimney for enhanced stack ventilation. Building and Environment. 1993;28(3):373-377. [Link] [DOI:10.1016/0360-1323(93)90042-2]
14. Gan G, Riffat SB. A numerical study of solar chimney for natural ventilation of buildings with heat recovery. Applied Thermal Engineering. 1998;18(12):1171-1187. [Link] [DOI:10.1016/S1359-4311(97)00117-8]
15. Wang H, Lei C. A numerical investigation of combined solar chimney and water wall for building ventilation and thermal comfort. Building and Environment. 2020;171:106616. [Link] [DOI:10.1016/j.buildenv.2019.106616]
16. Abdallah ASH. A new design of passive air condition integrated with solar chimney for hot arid region of Egypt. International Journal of Environmental Science and Technology. 2019;16(6):2611-2618. [Link] [DOI:10.1007/s13762-018-1804-x]
17. Imran AA, Jalil JM, Ahmed ST. Induced flow for ventilation and cooling by a solar chimney. Renewable Energy. 2015;78:236-244. [Link] [DOI:10.1016/j.renene.2015.01.019]
18. Khanal R, Lei C. An experimental investigation of an inclined passive walls solar chimney for natural ventilation. Solar Energy. 2014;107:461-474. [Link] [DOI:10.1016/j.solener.2014.05.032]
19. Ren X-H, Liu R-Z, Wang Y-H, Wang L, Zhao F-Y. Thermal driven natural convective flows inside the solar chimney flush-mounted with discrete heating sources: Reversal and cooperative flow dynamics. Renewable energy. 2019;138:354-367. [Link] [DOI:10.1016/j.renene.2019.01.090]
20. Goyal RK, Tiwari GN. Effect of thermal storage on the performance of a deep bed drying system. International Journal Ambient Energy. 1999;20(3):125-136. [Link] [DOI:10.1080/01430750.1999.9675330]
21. Li Y, Liu S. Experimental study on thermal performance of a solar chimney combined with PCM. Applied Energy. 2014;114:172-178. [Link] [DOI:10.1016/j.apenergy.2013.09.022]
22. Iran acid. The center of organic matter, mineral, and chemical of iran Sodium sulfate production [Internet]. Tehran: Iran Acid; 2019 [cited 2019 October 26]. Available from: http://iran-asid.ir/Sodium- sulfate- production/ [Link]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.