1. Zhao G, Cao X, Xiao W, Liu Q, Jun MBG. STEP-NC feature-oriented high-efficient CNC machining simulation. International Journal of Advanced Manufacturing Technology. 2020;106(5):2363-2375. [
Link] [
DOI:10.1007/s00170-019-04770-3]
2. Hendriko H. Cut geometry calculation for the semifinish five-axis milling of nonstraight staircase workpieces. Journal of Mechanical Science and Technology. 2020;34(1):1301-1311 [
Link] [
DOI:10.1007/s12206-020-0229-x]
3. Gao G, Baohai W, Dinghua Z, Ming L. Mechanistic identification of cutting force coefficients in bull-nose milling process. Chinese Journal of Aeronautics. 2013;26(3):823-830. [
Link] [
DOI:10.1016/j.cja.2013.04.007]
4. Altintas Y, Kersting P, Biermann D, Budak E, Denkena B, Lazoglu I. Virtual process systems for part machining operations. CIRP Annals. 2014;63(2):585-605. [
Link] [
DOI:10.1016/j.cirp.2014.05.007]
5. Sai L, Belguith R, Baili M, Dessein G, Bouzid W. An approach to modeling the chip thickness and cutter workpiece engagement region in 3 and 5 axis ball end milling. Journal of Manufacturing Processes. 2018;34:7-17. [
Link] [
DOI:10.1016/j.jmapro.2018.05.018]
6. Du J, Zhi H, Liu P, Bai Y. A novel method of calculating the engagement length of cutting edge in five-axis machining. The International Journal of Advanced Manufacturing Technology. 2019;102(9-12):3977-3994. [
Link] [
DOI:10.1007/s00170-019-03470-2]
7. Wei ZC, Guo ML, Wang MJ, Li SQ, Liu SX. Prediction of cutting force in five-axis flat-end milling. The International Journal of Advanced Manufacturing Technology. 2018;96(1-4):137-152 [
Link] [
DOI:10.1007/s00170-017-1380-0]
8. Wang W, Li Y, Shen W, Li X, Mou W. An industrial case study of feature-based in-process workpiece modeling. in 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 14-17 October 2012, Seoul, South Korea. Piscataway: IEEE; 2012. [
Link] [
DOI:10.1109/ICSMC.2012.6377828]
9. Joy J, Feng HY. Frame-sliced voxel representation: An accurate and memory-efficient modeling method for workpiece geometry in machining simulation. Computer-Aided Design. 2017;88:1-13 [
Link] [
DOI:10.1016/j.cad.2017.03.006]
10. Gong X, Feng HY. Cutter-workpiece engagement determination for general milling using triangle mesh modeling. Journal of Computational Design and Engineering. 2016;3(2):151-160. [
Link] [
DOI:10.1016/j.jcde.2015.12.001]
11. Lee SW, Nestler A. Virtual workpiece: workpiece representation for material removal process. The International Journal of Advanced Manufacturing Technology. 2012;58(5-8):443-463. [
Link] [
DOI:10.1007/s00170-011-3431-2]
12. Inui M, Huang Y, Onozuka H, Umezu N. Geometric simulation of power skiving of internal gear using solid model with triple-dexel representation. Procedia Manufacturing. 2020;48:520-527. [
Link] [
DOI:10.1016/j.promfg.2020.05.078]
13. Weinert K, Du S, Damm P, Stautner M. Swept volume generation for the simulation of machining processes. International Journal of Machine Tools and Manufacture. 2004;44(6):617-628. [
Link] [
DOI:10.1016/j.ijmachtools.2003.12.003]
14. Spence AD, Abrari F, Elbestawi MA. Integrated solid modeller based solutions for machining. Computer-Aided Design. 2000;32(8-9):553-568. [
Link] [
DOI:10.1016/S0010-4485(00)00042-7]
15. Spence A, Altintas Y. A solid modeller based milling process simulation and planning system. Journal of Manufacturing Science and Engineering. 1994;116(1):61-69. [
Link] [
DOI:10.1115/1.2901810]
16. Moetakef-Imani B, Elbestawi M. Geometric simulation of ball-end milling operations. Journal of Manufacturing Science and Engineering. 2001;123(2):177-184. [
Link] [
DOI:10.1115/1.1347034]
17. Kouravand S, Moetakef-Imani B. Developing a surface roughness model for end-milling of micro-channel. Machining Science and Technology. 2014;18(2):299-321. [
Link] [
DOI:10.1080/10910344.2014.897846]
18. Lazoglu I, Boz Y, Erdim H. Five-axis milling mechanics for complex free form surfaces. CIRP annals. 2011;60(1):117-120. [
Link] [
DOI:10.1016/j.cirp.2011.03.090]
19. Boz Y, Erdim H, Lazoglu I. A comparison of solid model and three-orthogonal dexelfield methods for cutter-workpiece engagement calculations in three-and five-axis virtual milling. The International Journal of Advanced Manufacturing Technology. 2015;81(5-8):811-823. [
Link] [
DOI:10.1007/s00170-015-7251-7]
20. Aras E, Yip-Hoi D. Geometric modeling of cutter/workpiece engagements in three-axis milling using polyhedral representations. Journal of Computing and Information Science in Engineering. 2008;8(3):031007. [
Link] [
DOI:10.1115/1.2960490]
21. Altintas Y. Manufacturing automation. Cambridge: Cambridge University Press; 2012. [
Link]
22. Ebrahimi M, Moetakef-Imani B. Dynamic simulation of boring process in time and frequency domain. 9th International Conference on Acoustics and Vibration (ISAV2019), 24-25 December 2019, Tehran, Iran. Tehran: Iranian Acoustics and Vibrations Association; 2019. [
Link]
23. Schmitz TL, Smith KS. Machining dynamics. Berlin: Springer; 2014. [
Link]