Volume 20, Issue 6 (June 2020)                   Modares Mechanical Engineering 2020, 20(6): 1533-1542 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abdollahi Taheri A, Golabi S. Experimental and Numerical Study of the Affecting Parameters on Single Point Incremental Forming Process of Perforated Aluminum-Copper Bimetal Sheet. Modares Mechanical Engineering 2020; 20 (6) :1533-1542
URL: http://mme.modares.ac.ir/article-15-38927-en.html
1- Solid Mechanics Department, Mechanical Engineering Faculty, University of Kashan, Kashan, Iran
2- Solid Mechanics Department, Mechanical Engineering Faculty, University of Kashan, Kashan, Iran , golabi-s@kashanu.ac.ir
Abstract:   (2836 Views)
In recent years, industrial applications of composite sheets have been increasingly expanded due to their extremely different properties such as high strength, low density, and good corrosion resistance compared to single layer sheets. For this reason, in the current study, it is investigated the flanging of composite metal sheets. Also, the behavior of an aluminum-copper sheet, cladded using explosive welding, during incremental forming of a circular collar have been experimentally and numerically studied. In addition, the experimental results are used to validate the numerical simulation of the forming process. At first, in order to understand collar forming of the perforated sheet, the effect of hole diameter, forming direction or layer arrangement on dimensional accuracy, thickness distribution and forming force were investigated and then, the effect of hole flanging and collar forming were compared using two strategies. The results show that by decreasing the initial hole diameter of sheet, the average vertical maximum force increases by 9%, the minimum thickness decreases and its location shifts toward the center of sheet. Aluminum-copper arrangement also experiences a 7% reduction in average force and a 4% increase in minimum thickness due to the protective property of copper layer in tensile state compares to copper-aluminum. Besides, the multi-step method leads to a 6% minimum thickness increase due to better material flow compared to single-step method.
Full-Text [PDF 1609 kb]   (2018 Downloads)    
Article Type: Original Research | Subject: Forming of metal sheets
Received: 2019/12/12 | Accepted: 2020/03/18 | Published: 2020/06/20

References
1. Aiken H. Machine for shaping sheet metal. United States patent US411116A. 1889 Sep 17. [Link]
2. Leszak E. Apparatus and process for incremental dieless forming. United States patent US3342051A. 1967 Sep 19. [Link]
3. Jeswiet J. Incremental single point forming. Transactions of the North American Manufacturing Research Institute of SME. 2000;29:75-79. [Link]
4. Shim MS, Park JJ. The formability of aluminum sheet in incremental forming. Journal of Material Processing Technology. 2001;113(1-3):654-658. [Link] [DOI:10.1016/S0924-0136(01)00679-3]
5. Iseki H, Naganawa T. Vertical wall surface forming of rectangular shell using multistage incremental forming with spherical and cylindrical rollers. Journal of Materials Processing Technology. 2002;130-131:675-679. [Link] [DOI:10.1016/S0924-0136(02)00735-5]
6. Kim Y H, Park JJ. Effect of process parameters on formability in incremental forming of sheet metal. Journal of Materials Processing Technology. 2002;130-131:42-46. [Link] [DOI:10.1016/S0924-0136(02)00788-4]
7. Park JJ, Kim YH. Fundamental studies on the incremental sheet metal forming technique. Journal of Materials Processing Technology. 2003;140(1-3):447-453. [Link] [DOI:10.1016/S0924-0136(03)00768-4]
8. Filice L, Fratini L, Micari F. Analysis of Material Formability in Incremental Forming. CIRP Annals. 2002;51(1):199-202. [Link] [DOI:10.1016/S0007-8506(07)61499-1]
9. Fratini L, Ambrogio G, Di Lorenzo R, Filice L, Micari F. Influence of mechanical properties of the sheet material on formability in single point incremental forming. CIRP Annals. 2004;53(1):207-210. [Link] [DOI:10.1016/S0007-8506(07)60680-5]
10. Amborgio G, Costantino I, Denapoli L, Filice L, Muzzupappa M. Influence of some relevant process parameters on the dimensional accuracy in incremental forming: a numerical and experimental investigation. Journal of Materials Processing Technology. 2004;153-154:501-507. [Link] [DOI:10.1016/j.jmatprotec.2004.04.139]
11. Cerro I, Maidagan E, Arana J, Rivero A, Rodriguez PP. Theoretical and experimental analysis of the dieless incremental sheet forming process. Journal of Materials Processing Technology. 2006;177(1-3):404-408. [Link] [DOI:10.1016/j.jmatprotec.2006.04.078]
12. Attansio A, Ceretti E, Giardini C. Optimization of tool path in two points incremental forming. Journal of Materials Processing Technology. 2006;177(1-3):409-412. [Link] [DOI:10.1016/j.jmatprotec.2006.04.047]
13. Jackson K, Allwood J. The mechanics of incremental sheet forming. Journal of Materials Processing Technology. 2009;209(3):1158-1174. [Link] [DOI:10.1016/j.jmatprotec.2008.03.025]
14. Dejardina S, Thibaudb S, Gelina JC, Michel G. Experimental investigations and numerical analysis for improving knowledge of incremental sheet forming process for sheet metal parts. Journal of Materials Processing Technology. 2010;210(2):363-369. [Link] [DOI:10.1016/j.jmatprotec.2009.09.025]
15. Ghasemi G, Soltani B. Experimental investigation on the effective parameters on forming force, dimensional accuracy and thickness distribution in single point incremental forming. Modares Mechanical Engineering. 2014;14(1):89-96. [Persian] [Link]
16. Mirnia MJ, Dariani BM. Analysis of incremental sheet metal forming using the upper-bound approach. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2012;226(8):1309-1320. [Link] [DOI:10.1177/0954405412445113]
17. Golabi S, Khazaali H. Determining frustum depth of 304-stainless steel plates with various diameters and thicknesses by incremental forming. Journal of Mechanical Science and Technology. 2014;28(8):3273-3278. [Link] [DOI:10.1007/s12206-014-0738-6]
18. Tarkesh Esfahani R, Golabi S, Zojaji Z. Optimization of finite element model of laser forming in circular path using genetic algorithms and ANFIS. Soft Computing. 2016;20(5):2031-2045. [Link] [DOI:10.1007/s00500-015-1622-8]
19. Habibi Parsa M, Yamaguchi K, Takakura N. Redrawing analysis of aluminum stainless-steel laminated sheet using FEM simulations and experiments. International Journal of Mechanical Sciences. 2001;43(10):2331-2347. [Link] [DOI:10.1016/S0020-7403(01)00038-8]
20. Bagherzadeh S, Mollaei Dariani B, Malekzadeh K. Theoretical study on hydro-mechanical deep drawing process of bimetallic sheets and experimental observations. Journal of Materials Processing Technology. 2012;212(9):1840-1849. [Link] [DOI:10.1016/j.jmatprotec.2012.04.002]
21. Atrian A, Fereshteh-Saniee F. Deep drawing process of steel/brass laminated sheets. Composites Part B: Engineering. 2013;47:75-81. [Link] [DOI:10.1016/j.compositesb.2012.10.023]
22. Dehghani F, Salimi M. Analytical and experimental analysis of the formability of copper-stainless-steel 304L clad metal sheets in deep drawing. International Journal of Advanced Manufacturing Technology. 2016;82(1-4):163-177. [Link] [DOI:10.1007/s00170-015-7359-9]
23. Honarpisheh M, Keimasi M, Alinaghian I. Numerical and experimental study on incremental forming of Al/Cu bimetals: Influence of process parameters on the forming force, dimensional accuracy and thickness variations. Journal of Mechanics of Materials and Structures. 2018;13(1):35-51. [Link] [DOI:10.2140/jomms.2018.13.35]
24. Sakhtemanian MR, Honarpisheh M, Amini S. Numerical and experimental study on the layer arrangement in the incremental forming process of explosive-welded low-carbon steel/CP-titanium bimetal sheet. The International Journal of Advanced Manufacturing Technology. 2018;95(9-12):3781-3796. [Link] [DOI:10.1007/s00170-017-1462-z]
25. Gheysarian A, Honarpisheh M. Process Parameters Optimization of the Explosive Welded Al/Cu Bimetal in the Incremental Sheet Metal Forming Process. Iranian Journal of Science and Technology: Transactions of Mechanical Engineering. 2019;43:945-956. [Persian] [Link] [DOI:10.1007/s40997-018-0205-6]
26. Honarpisheh M, Gheysarian A. An Experimental Study on the process parameters of Incremental Forming of Explosively-Welded Al/Cu Bimetal. Journal of Computational and Applied Research in Mechanical Engineering. 2017;7(1):73-83. [Link]
27. Gheysarian A, Honarpisheh M. Investigation of Fracture Depth of Al/Cu Bimetallic Sheet in Single Point Incremental Forming Process. Iranian Journal of Materials Forming. 2019;6(1):2-15. [Link]
28. Zhidong Ch, Ming L, Jun C. Analytical modeling and experimental validation of the forming force in several typical incremental sheet forming processes. International Journal of Machine Tools and Manufacture. 2019;140:62-76. [Link] [DOI:10.1016/j.ijmachtools.2019.03.003]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.