1. Lutjering G, Williams JC, Gysler A. Titanium. Humburg: Springer; 2000. [
Link]
2. Lin FS, Starke EA, Chakrabortty S, Gysler A. The effect of microstructure on the deformation modes and mechanical properties of Ti-6Al-2Nb-1Ta-0.8 Mo: Part I. Widmanstätten structures. Metallurgical Transactions A. 1984;15:1873-1881. [
Link] [
DOI:10.1007/BF02664901]
3. Leyens C, Manfred P. Titanium and titanium alloys: Fundamentals and applications. Weinheim: Wiley-VCH; 2003. [
Link] [
DOI:10.1002/3527602119]
4. Shi X, Zeng W, Sun Y, Han Y, Zhao Y, Guo P. Microstructure-tensile properties correlation for the Ti-6Al-4V titanium alloy. Journal of Materials Engineering and Performance. 2015;24(4):1754-1762. [
Link] [
DOI:10.1007/s11665-015-1437-x]
5. Sun Y, Zeng W, Han Y, Zhao Y, Wang G, Dargusch MS, et al. Modeling the correlation between microstructure and the properties of the Ti-6Al-4V alloy based on an artificial neural network. Materials Science and Engineering: A. 2011;528(29-30):8757-8764. [
Link] [
DOI:10.1016/j.msea.2011.08.059]
6. Detak YP, Syarif J, Ramli R. Prediction of mechanical properties of Ti-6Al-4V using neural network. Advanced Materials Research. 2010;89-91:443-448. [
Link] [
DOI:10.4028/www.scientific.net/AMR.89-91.443]
7. Zipser D, Andersen RA. A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature. 1988;331:679-684. [
Link] [
DOI:10.1038/331679a0]
8. Chen B, Cheng XR, Hu YS, Ren Y. Application of back-propagation neural network for controlling the front end bending phenomenon in plate rolling. International Journal of Materials and Product Technology. 2013;46(2-3):166-174. [
Link] [
DOI:10.1504/IJMPT.2013.056298]
9. Menhaj MB. Fundamentals of neural networks computational intelligence vol. 1 [dissertation]. Tehran: Amirkabir university of technology publication; 2013. [Persian] [
Link]
10. Montgomery DC, Myers RH, Anderson-Cook CM. Process and product optimization using designed experiments. New York: Wiley; 2009. [
Link]
11. Kar S, Searles T, Lee E, Viswanathan G, Fraser H, Tiley J, et al. Modeling the tensile properties in β-processed α/β Ti alloys. Metallurgical and Materials Transactions A. 2006;37(3):559-566. [
Link] [
DOI:10.1007/s11661-006-0028-8]
12. Jaffee RI. The physical metallurgy of titanium alloys. Progress in Metal Physics. 1958;7:65-106. [
Link] [
DOI:10.1016/0502-8205(58)90004-2]
13. Lutjering G. Property optimization through microstructural control in titanium and aluminum alloys. Materials Science and Engineering: A. 1999;263(2):117-126. [
Link] [
DOI:10.1016/S0921-5093(98)01169-1]
14. Smith WF. Structure and properties of engineering alloys. New York: McGraw-Hill; 1994. [
Link]
15. Donachie MJ. Titanium: A technical guide. Geauga: ASM international; 2000. [
Link]
16. Filip R, Kubiak K, Ziaja W, Sieniawski J. The effect of microstructure on the mechanical properties of two-phase titanium alloys. Journal of Materials Processing Technology. 2003;133(1-2):84-89. [
Link] [
DOI:10.1016/S0924-0136(02)00248-0]
17. Lutjering G Influence of processing on microstructure and mechanical properties of (α+ β) titanium alloys. Materials Science and Engineering: A. 1998;243(1-2):32-45. [
Link] [
DOI:10.1016/S0921-5093(97)00778-8]
18. Terlinde G, Luetjering G. Influence of grain size and age-hardening on dislocation pile-ups and tensile fracture for a Ti-AI alloy. Metallurgical and Materials Transactions A. 1982;13(7):1283-1292. [
Link] [
DOI:10.1007/BF02645512]
19. Weiss I, Froes FH, Eylon D, Welsch GE. Modification of alpha morphology in Ti-6Al-4V by thermo mechanical processing. Metallurgical Transactions A. 1986;17:1935-1947. [
Link] [
DOI:10.1007/BF02644991]