1. Vajdi M, Sadegh Moghanlou F, Ranjbarpour Niari E, Shahedi Asl M, Shokouhimehr M. Heat transfer and pressure drop in a ZrB2 microchannel heat sink: A numerical approach. Ceramics International. 2020;46(2):1730-1735. [
Link] [
DOI:10.1016/j.ceramint.2019.09.146]
2. Shum HC, Bandyopadhyay A, Bose S, Weitz D. Double emulsion droplets as microreactorsfor synthesis of mesoporous hydroxyapatite. Chemistry of Materials. 2009;21(22),5548-5555. [
Link] [
DOI:10.1021/cm9028935]
3. Sanguansri P, Augustin MA. Nanoscale materials development-a food industry perspective nanoscale materials development a food industry perspective. Trends in Food Science & Technology. 2006;17(10):547-556. [
Link] [
DOI:10.1016/j.tifs.2006.04.010]
4. Sadegh Moghanlou F, Shams Khorrami A, Esmaeilzadeh E, Aminfar H. Experimental study on electrohydrodynamically induced heat transfer enhancement in a minichannel. Experimental Thermal and Fluid Science. 2014;59:24-31. [
Link] [
DOI:10.1016/j.expthermflusci.2014.07.019]
5. Li W, Zhang L, Ge X, Xu B, Zhang W, Qu L, et al. Microfluidic fabrication of microparticles for biomedical applications. Chemical Society Review. 2018;47(15):5646-5683. [
Link] [
DOI:10.1039/C7CS00263G]
6. Anna SL, Bontoux N, Stone HA. Formation of dispersions using flow focusing in microchannels. Applied Physics Letters. 2003;82(3):364-366. [
Link] [
DOI:10.1063/1.1537519]
7. Liu ZM, Yang Y, Du Y, Pang Y. Advances in droplet-based microfluidic technology and its applications. Chinese Journal of Analytical Chemistry. 2017;45(2):282-296. [
Link] [
DOI:10.1016/S1872-2040(17)60994-0]
8. Shams Khorrami A, Rezai P. Oscillating dispersed-phase co-flow microfluidic droplet generation: Multi-droplet size effect. Biomicrofluidics. 2018;12(3):034113. [
Link] [
DOI:10.1063/1.5034473]
9. Chigier NA. The atomization and burning of liquid fuel sprays. Progress Energy and Combustion Science. 1976;2(2):97-114. [
Link] [
DOI:10.1016/0360-1285(76)90019-8]
10. Wang J, Wang X, Zhu P, Chen C, Wang J, Li Y. Microfluidic rapid fabrication of tunable polyvinyl alcohol microspheres for adsorption applications. Materials 2019;12(22):3712. [
Link] [
DOI:10.3390/ma12223712]
11. Yule AJ, Bolado R. Fuel spray burning regime and initial conditions. Combustion and Flame. 1984;55(1):1-12. [
Link] [
DOI:10.1016/0010-2180(84)90144-5]
12. Wong VL, Loizou K, Lau PL, Graham RS, Hewakandamby BN. Numerical studies of shearthinning droplet formation in a microfluidic T-junction using two-phase level-SET method. Chemical Engineering Science. 2017;174:157-173. [
Link] [
DOI:10.1016/j.ces.2017.08.027]
13. Costa ALR, Gomes A, Cunha RL. Studies of droplets formation regime and actual flow rate of liquid-liquid flows in flow-focusing microfluidic devices. Experimental Thermal and Fluid Science. 2017;85:167-175. [
Link] [
DOI:10.1016/j.expthermflusci.2017.03.003]
14. Guillot P, Colin A. Stability of parallel flows in a microchannel after a T-junction. Physical Review E. 2005;72:06630. [
Link] [
DOI:10.1103/PhysRevE.72.066301]
15. Yong YM, Yang C, Jiang Y, Joshi A, Shi YC, Yin XL. Numerical simulation of immiscible liquid-liquid flow in microchannels using lattice Boltzmann method. Science China Chemistry. 2011;54(1):224-256. [
Link] [
DOI:10.1007/s11426-010-4164-z]
16. Zhou H, Pozrikidis C. The flow of suspensions in channels: Single files of drops. Physics of Fluids A: Fluid Dinamics. 2000;5(2):311-324. [
Link] [
DOI:10.1063/1.858893]
17. Alizadeh M, Taeibi Rahni M, Eftekhari Yazdi M. Numerical investigation of emulsion process in microchannels, using index-function Lattice Boltzmann method. Modares Mechanical Engineering. 2015;15(4):13-22. [Persian] [
Link]
18. Yao J, Lin F, Kim HS, Park J. The effect of oil viscosity on droplet generation rate and droplet size in a T-junction microfluidic droplet generator. Micromachines. 2019;10(12):808. [
Link] [
DOI:10.3390/mi10120808]
19. Rahimi M, Shams Khorrami A, Rezai P. Effect of device geometry on droplet size in co-axial flow-focusing microfluidic droplet generation devices. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2019;570:510-517. [
Link] [
DOI:10.1016/j.colsurfa.2019.03.067]
20. Lan W, Li S, Luo G. Numerical and experimental investigation of dripping and jetting flow in a coaxial micro-channel. Chemical Engineering Science. 2015;134:76-85. [
Link] [
DOI:10.1016/j.ces.2015.05.004]
21. Deng C, Wang H, Huang W, Cheng S. Numerical and experimental study of oil-in-water (O/W) droplet formation in a co-flowing capillary device. Colloids and Surfaces A: Physicochemical Engineering Aspects. 2017;533:1-8. [
Link] [
DOI:10.1016/j.colsurfa.2017.05.041]
22. Chen Y, Wu L, Zhang C. Emulsion droplet formation in coflowing liquid streams. Physical Review E. 2013;87(1-1)013002. [
Link] [
DOI:10.1103/PhysRevE.87.013002]
23. Qian JY, Chen MR, Wu Z, Jin ZJ. Bengt sunden, effects of a dynamic injection flow rate on slug generation in a cross-junction square microchannel. Processes. 2019;7(10):765. [
Link] [
DOI:10.3390/pr7100765]
24. Agnihotri S, Raveshi MR, Bhardwaj R, Neild A. Droplet breakup at the entrance to a bypass channel in a microfluidic system. Physical Review Applied. 2019;11(3):034020. [
Link] [
DOI:10.1103/PhysRevApplied.11.034020]
25. Nasser GA, El-Bab AMRF, Abdel-Mawgood AL, Mohamed H, Saleh AM. CO2 laser fabrication of PMMA microfluidic double T-junction device with modified inlet-angle for cost-effective PCR application. Micromachines. 2019;10(10):678. [
Link] [
DOI:10.3390/mi10100678]
26. Gelin P, Bihi I, Ziemecka I, Thienpont B, Christiaens J, Hellemans K, et al. Microfluidic device for high-throughput production of monodisperse droplets. Industrial & Engineering Chemistry Research. 2020. [In Press] [
Link] [
DOI:10.1021/acs.iecr.9b05935]
27. Nooranidoost M, Kumar R. Geometry effects of axisymmetric flow-focusing microchannels for single cell encapsulation. Materials. 2019;12(17):2811. [
Link] [
DOI:10.3390/ma12172811]
28. Li X, He L, Lv S, Xu C, Qian P, Xie F, et al. Effects of wall velocity slip on droplet generation in microfluidic T-junctions. RSC Advances. 2019;9:23229-23240. [
Link] [
DOI:10.1039/C9RA03761F]
29. Li X, He L, He Y, Gu H, Liu M. Numerical study of droplet formation in the ordinary and modified T-junctions. Physics of Fluids. 2019;31(8):082101. [
Link] [
DOI:10.1063/1.5107425]
30. Chakraborty I, Biswas G, Ghoshdastidar PS. A coupled level-set and volume-of-fluid method for the buoyant rise of gas bubbles in liquids. International Journal of Heat and Mass Transfer. 2013;58(1-2):240-259. [
Link] [
DOI:10.1016/j.ijheatmasstransfer.2012.11.027]
31. Abrishamkar A, Rane AS, Elvira KS, Wootton RCR, Sainio T, deMello AJ. A Comsol multiphysics® model of droplet formation at a flow focusing device. Comsol Conference, Rotterdam, Netherland. Unknown Publisher Publisher; 2013. [
Link]
32. Gabbanelli S, Drazer G, Koplik J. Lattice Boltzmann method for non-Newtonian (power-law) fluids. Physical Review E. 2005;72:046312. [
Link] [
DOI:10.1103/PhysRevE.72.046312]
33. Tice JD, Song H, Lyon AD, Ismagilov RF. Formation of droplets and mixing in multiphase microfluidics at low values of the reynolds and the capillary numbers. Langmuir. 2003;19(22):9127-9133. [
Link] [
DOI:10.1021/la030090w]
34. Wiker N, Anders K, Borrvall T. Topology optimization of regions of Darcy and Stokes flow. International Journal for Numerical Methods in Engineering. 2007;69(7):1374-1404. [
Link] [
DOI:10.1002/nme.1811]
35. Han W, Chen X, Wu Z, Zheng Y. Three‑dimensional numerical simulation of droplet formationin a microfluidic flow‑focusing device. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2019;41(6):265. [
Link] [
DOI:10.1007/s40430-019-1767-y]
36. Nabavi SA, Gu S, Vladisavljevic GT, Ekanem EE. Dynamics of double emulsion break-up in three phase glass capillary microfluidic devices. Journal of Colloid and Interface Science. 2015;450:279-287. [
Link] [
DOI:10.1016/j.jcis.2015.03.032]
37. Gol B, Kurdzinski ME, Tovar-Lopez FJ, Petersen P, Mitchell A, Khoshmanesh K. Hydrodynamic directional control of liquid metal droplets within a microfluidic flow focusing system. Applied Physics Letters. 2016;108(16):164101. [
Link] [
DOI:10.1063/1.4947272]
38. Gu Z, Liow JL. Micro-droplet formation with non-Newtonian solutions in microfluidic T-junctions with different inlet angles. In Proceedings of the 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 5-8 March 2012, Kyoto, Japan. Piscataway: IEEE; 2012. [
Link] [
DOI:10.1109/NEMS.2012.6196809]
39. Ghazanfari Jajin E, Sadegh Moghanlou F, Vajdi M, Jafargolinejad S. Numerical investigation effect of geometry in micro droplet generation. 22nd Iranian Physical Chemistry Conference, Zanjan, Iran. Unknown Publisher; 2019. [
Link]