Volume 20, Issue 9 (September 2020)                   Modares Mechanical Engineering 2020, 20(9): 2223-2234 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moghanlou F, Ghazanfari Jajin E, Vajdy Hokmabad M, Jafargholinejad S. On the Experimental and Numerical Droplet Generation in the Ordinary and Modified Micro channels with Oval Obstacle. Modares Mechanical Engineering 2020; 20 (9) :2223-2234
URL: http://mme.modares.ac.ir/article-15-40698-en.html
1- Department of Mechanical Engineering, Faculty of Engineering, Mohaghegh Ardabili University, Ardabil, Iran , f_moghanlou@uma.ac.ir
2- Department of Mechanical Engineering, Faculty of Engineering, Mohaghegh Ardabili University, Ardabil, Iran
3- Department of Mechanical Engineering, Ardabil Branch, Islamic Azad University, Ardabil, Iran
Abstract:   (3116 Views)
The study of micro-scale fluid behavior is known as microfluidics, which has received much attention in many scientific fields. In the current research, the droplet generation in the micro channel has been studied numerically and experimentally. Two micro channels were fabricated by soft lithography method and the results of generated droplets were compared. The process of droplet formation was investigated using two fluids including water (dispersed fluid phase), and oil (continuous fluid phase) at different flow ratios. The images of the droplet formation and crossing steps in the micro channels were analyzed using image processing. The results showed that by increasing the ratio of dispersed to continuous flow, the size of droplets was increased, the droplet formation distance (the distance of the produced droplets) was increased, and the frequency of droplets generation was decreased. Also, the proposed new geometry leads to the production of smaller droplets with higher production frequencies. In the basic geometry, the droplet diameter was observed to be between 117 and 700 micrometers while in the proposed geometry, the diameter of droplets is between 46 and 466 micrometers. In the proposed geometry, the size of the produced droplets decreases, and the production frequency increases.
Full-Text [PDF 782 kb]   (4573 Downloads)    
Article Type: Original Research | Subject: Experimental Fluid Mechanics
Received: 2020/02/15 | Accepted: 2020/06/2 | Published: 2020/09/20

References
1. Vajdi M, Sadegh Moghanlou F, Ranjbarpour Niari E, Shahedi Asl M, Shokouhimehr M. Heat transfer and pressure drop in a ZrB2 microchannel heat sink: A numerical approach. Ceramics International. 2020;46(2):1730-1735. [Link] [DOI:10.1016/j.ceramint.2019.09.146]
2. Shum HC, Bandyopadhyay A, Bose S, Weitz D. Double emulsion droplets as microreactorsfor synthesis of mesoporous hydroxyapatite. Chemistry of Materials. 2009;21(22),5548-5555. [Link] [DOI:10.1021/cm9028935]
3. Sanguansri P, Augustin MA. Nanoscale materials development-a food industry perspective nanoscale materials development a food industry perspective. Trends in Food Science & Technology. 2006;17(10):547-556. [Link] [DOI:10.1016/j.tifs.2006.04.010]
4. Sadegh Moghanlou F, Shams Khorrami A, Esmaeilzadeh E, Aminfar H. Experimental study on electrohydrodynamically induced heat transfer enhancement in a minichannel. Experimental Thermal and Fluid Science. 2014;59:24-31. [Link] [DOI:10.1016/j.expthermflusci.2014.07.019]
5. Li W, Zhang L, Ge X, Xu B, Zhang W, Qu L, et al. Microfluidic fabrication of microparticles for biomedical applications. Chemical Society Review. 2018;47(15):5646-5683. [Link] [DOI:10.1039/C7CS00263G]
6. Anna SL, Bontoux N, Stone HA. Formation of dispersions using flow focusing in microchannels. Applied Physics Letters. 2003;82(3):364-366. [Link] [DOI:10.1063/1.1537519]
7. Liu ZM, Yang Y, Du Y, Pang Y. Advances in droplet-based microfluidic technology and its applications. Chinese Journal of Analytical Chemistry. 2017;45(2):282-296. [Link] [DOI:10.1016/S1872-2040(17)60994-0]
8. Shams Khorrami A, Rezai P. Oscillating dispersed-phase co-flow microfluidic droplet generation: Multi-droplet size effect. Biomicrofluidics. 2018;12(3):034113. [Link] [DOI:10.1063/1.5034473]
9. Chigier NA. The atomization and burning of liquid fuel sprays. Progress Energy and Combustion Science. 1976;2(2):97-114. [Link] [DOI:10.1016/0360-1285(76)90019-8]
10. Wang J, Wang X, Zhu P, Chen C, Wang J, Li Y. Microfluidic rapid fabrication of tunable polyvinyl alcohol microspheres for adsorption applications. Materials 2019;12(22):3712. [Link] [DOI:10.3390/ma12223712]
11. Yule AJ, Bolado R. Fuel spray burning regime and initial conditions. Combustion and Flame. 1984;55(1):1-12. [Link] [DOI:10.1016/0010-2180(84)90144-5]
12. Wong VL, Loizou K, Lau PL, Graham RS, Hewakandamby BN. Numerical studies of shearthinning droplet formation in a microfluidic T-junction using two-phase level-SET method. Chemical Engineering Science. 2017;174:157-173. [Link] [DOI:10.1016/j.ces.2017.08.027]
13. Costa ALR, Gomes A, Cunha RL. Studies of droplets formation regime and actual flow rate of liquid-liquid flows in flow-focusing microfluidic devices. Experimental Thermal and Fluid Science. 2017;85:167-175. [Link] [DOI:10.1016/j.expthermflusci.2017.03.003]
14. Guillot P, Colin A. Stability of parallel flows in a microchannel after a T-junction. Physical Review E. 2005;72:06630. [Link] [DOI:10.1103/PhysRevE.72.066301]
15. Yong YM, Yang C, Jiang Y, Joshi A, Shi YC, Yin XL. Numerical simulation of immiscible liquid-liquid flow in microchannels using lattice Boltzmann method. Science China Chemistry. 2011;54(1):224-256. [Link] [DOI:10.1007/s11426-010-4164-z]
16. Zhou H, Pozrikidis C. The flow of suspensions in channels: Single files of drops. Physics of Fluids A: Fluid Dinamics. 2000;5(2):311-324. [Link] [DOI:10.1063/1.858893]
17. Alizadeh M, Taeibi Rahni M, Eftekhari Yazdi M. Numerical investigation of emulsion process in microchannels, using index-function Lattice Boltzmann method. Modares Mechanical Engineering. 2015;15(4):13-22. [Persian] [Link]
18. Yao J, Lin F, Kim HS, Park J. The effect of oil viscosity on droplet generation rate and droplet size in a T-junction microfluidic droplet generator. Micromachines. 2019;10(12):808. [Link] [DOI:10.3390/mi10120808]
19. Rahimi M, Shams Khorrami A, Rezai P. Effect of device geometry on droplet size in co-axial flow-focusing microfluidic droplet generation devices. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2019;570:510-517. [Link] [DOI:10.1016/j.colsurfa.2019.03.067]
20. Lan W, Li S, Luo G. Numerical and experimental investigation of dripping and jetting flow in a coaxial micro-channel. Chemical Engineering Science. 2015;134:76-85. [Link] [DOI:10.1016/j.ces.2015.05.004]
21. Deng C, Wang H, Huang W, Cheng S. Numerical and experimental study of oil-in-water (O/W) droplet formation in a co-flowing capillary device. Colloids and Surfaces A: Physicochemical Engineering Aspects. 2017;533:1-8. [Link] [DOI:10.1016/j.colsurfa.2017.05.041]
22. Chen Y, Wu L, Zhang C. Emulsion droplet formation in coflowing liquid streams. Physical Review E. 2013;87(1-1)013002. [Link] [DOI:10.1103/PhysRevE.87.013002]
23. Qian JY, Chen MR, Wu Z, Jin ZJ. Bengt sunden, effects of a dynamic injection flow rate on slug generation in a cross-junction square microchannel. Processes. 2019;7(10):765. [Link] [DOI:10.3390/pr7100765]
24. Agnihotri S, Raveshi MR, Bhardwaj R, Neild A. Droplet breakup at the entrance to a bypass channel in a microfluidic system. Physical Review Applied. 2019;11(3):034020. [Link] [DOI:10.1103/PhysRevApplied.11.034020]
25. Nasser GA, El-Bab AMRF, Abdel-Mawgood AL, Mohamed H, Saleh AM. CO2 laser fabrication of PMMA microfluidic double T-junction device with modified inlet-angle for cost-effective PCR application. Micromachines. 2019;10(10):678. [Link] [DOI:10.3390/mi10100678]
26. Gelin P, Bihi I, Ziemecka I, Thienpont B, Christiaens J, Hellemans K, et al. Microfluidic device for high-throughput production of monodisperse droplets. Industrial & Engineering Chemistry Research. 2020. [In Press] [Link] [DOI:10.1021/acs.iecr.9b05935]
27. Nooranidoost M, Kumar R. Geometry effects of axisymmetric flow-focusing microchannels for single cell encapsulation. Materials. 2019;12(17):2811. [Link] [DOI:10.3390/ma12172811]
28. Li X, He L, Lv S, Xu C, Qian P, Xie F, et al. Effects of wall velocity slip on droplet generation in microfluidic T-junctions. RSC Advances. 2019;9:23229-23240. [Link] [DOI:10.1039/C9RA03761F]
29. Li X, He L, He Y, Gu H, Liu M. Numerical study of droplet formation in the ordinary and modified T-junctions. Physics of Fluids. 2019;31(8):082101. [Link] [DOI:10.1063/1.5107425]
30. Chakraborty I, Biswas G, Ghoshdastidar PS. A coupled level-set and volume-of-fluid method for the buoyant rise of gas bubbles in liquids. International Journal of Heat and Mass Transfer. 2013;58(1-2):240-259. [Link] [DOI:10.1016/j.ijheatmasstransfer.2012.11.027]
31. Abrishamkar A, Rane AS, Elvira KS, Wootton RCR, Sainio T, deMello AJ. A Comsol multiphysics® model of droplet formation at a flow focusing device. Comsol Conference, Rotterdam, Netherland. Unknown Publisher Publisher; 2013. [Link]
32. Gabbanelli S, Drazer G, Koplik J. Lattice Boltzmann method for non-Newtonian (power-law) fluids. Physical Review E. 2005;72:046312. [Link] [DOI:10.1103/PhysRevE.72.046312]
33. Tice JD, Song H, Lyon AD, Ismagilov RF. Formation of droplets and mixing in multiphase microfluidics at low values of the reynolds and the capillary numbers. Langmuir. 2003;19(22):9127-9133. [Link] [DOI:10.1021/la030090w]
34. Wiker N, Anders K, Borrvall T. Topology optimization of regions of Darcy and Stokes flow. International Journal for Numerical Methods in Engineering. 2007;69(7):1374-1404. [Link] [DOI:10.1002/nme.1811]
35. Han W, Chen X, Wu Z, Zheng Y. Three‑dimensional numerical simulation of droplet formationin a microfluidic flow‑focusing device. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2019;41(6):265. [Link] [DOI:10.1007/s40430-019-1767-y]
36. Nabavi SA, Gu S, Vladisavljevic GT, Ekanem EE. Dynamics of double emulsion break-up in three phase glass capillary microfluidic devices. Journal of Colloid and Interface Science. 2015;450:279-287. [Link] [DOI:10.1016/j.jcis.2015.03.032]
37. Gol B, Kurdzinski ME, Tovar-Lopez FJ, Petersen P, Mitchell A, Khoshmanesh K. Hydrodynamic directional control of liquid metal droplets within a microfluidic flow focusing system. Applied Physics Letters. 2016;108(16):164101. [Link] [DOI:10.1063/1.4947272]
38. Gu Z, Liow JL. Micro-droplet formation with non-Newtonian solutions in microfluidic T-junctions with different inlet angles. In Proceedings of the 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 5-8 March 2012, Kyoto, Japan. Piscataway: IEEE; 2012. [Link] [DOI:10.1109/NEMS.2012.6196809]
39. Ghazanfari Jajin E, Sadegh Moghanlou F, Vajdi M, Jafargolinejad S. Numerical investigation effect of geometry in micro droplet generation. 22nd Iranian Physical Chemistry Conference, Zanjan, Iran. Unknown Publisher; 2019. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.