1. Karajibani E, Hashemi R, Sedighi M. Forming limit diagram of aluminum-copper two-layer sheets: Numerical simulations and experimental verifications. International Journal of Advanced Manufacturing Technology. 2017;90(9-12):2713-2722. [
Link] [
DOI:10.1007/s00170-016-9585-1]
2. Hashemi R, Karajibani E. Forming limit diagram of Al-Cu two-layer metallic sheets considering the Marciniak and Kuczynski theory. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2018;232(5):848-854. [
Link] [
DOI:10.1177/0954405416654419]
3. Jalali Aghchai A, Shakeri M, Mollaei-Dariani B. Theoretical and experimental formability study of two-layer metallic sheet (Al1100/St12). Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2008;222(9):1131-1138. [
Link] [
DOI:10.1243/09544054JEM1140]
4. Gerdooei M, Mollaei Dariani B. Strain-rate-dependent forming limit diagrams for sheet metals. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2008;222(12):1651-1659. [
Link] [
DOI:10.1243/09544054JEM1193]
5. Seth M, Vohnout VJ, Daehn GS. Formability of steel sheet in high velocity impact. Journal of Materials Processing Technology. 2005;168(3):390-400. [
Link] [
DOI:10.1016/j.jmatprotec.2004.08.032]
6. Shabanpour M, Fallahi Arezoodar A. Multi-objective optimization of the depth of bead and tearing in electromagnetic tube compression forming. International Journal of Advanced Manufacturing Technology. 2016;87(1-4):867-875. [
Link] [
DOI:10.1007/s00170-016-8519-2]
7. Psyk V, Risch D, Kinsey BL, Tekkaya AE, Kleiner M. Electromagnetic forming-a review. Journal of Materials Processing Technology. 2011;211(5):787-829. [
Link] [
DOI:10.1016/j.jmatprotec.2010.12.012]
8. Takatsu N, Kato M, Sato K, Tobe T. High-speed forming of metal sheets by electromagnetic force. JSME International Journal Ser 3, Vibration, Control Engineering, Engineering for Industry. 1988;31(1):142-148. [
Link] [
DOI:10.1299/jsmec1988.31.142]
9. Correia JPM, Siddiqui MA, Ahzi S, Belouettar S, Davies R. A simple model to simulate electromagnetic sheet free bulging process. International Journal of Mechanical Sciences. 2008;50(10-11):1466-1475. [
Link] [
DOI:10.1016/j.ijmecsci.2008.08.008]
10. Golovashchenko SF. Material formability and coil design in electromagnetic forming. Journal of Materials Engineering and Performance. 2007;16(3):314-320. [
Link] [
DOI:10.1007/s11665-007-9058-7]
11. Li C, Liu D, Yu H, Ji Z. Research on formability of 5052 aluminum alloy sheet in a quasi-static-dynamic tensile process. International Journal of Machine Tools and Manufacture. 2009;49(2):117-124. [
Link] [
DOI:10.1016/j.ijmachtools.2008.10.006]
12. Takuda H, Mori K, Fujimoto H, Hatta N. Prediction of forming limit in deep drawing of Fe/Al laminated composite sheets using ductile fracture criterion. Journal of Materials Processing Technology. 1996;60(1-4):291-296. [
Link] [
DOI:10.1016/0924-0136(96)02344-8]
13. Lang L, Danckert J, Nielsen KB. Multi-layer sheet hydroforming: Experimental and numerical investigation into the very thin layer in the middle. Journal of Materials Processing Technology. 2005;170(3):524-535. [
Link] [
DOI:10.1016/j.jmatprotec.2005.06.033]
14. Tseng HC, Hung C, Huang CC. An analysis of the formability of aluminum/copper clad metals with different thicknesses by the finite element method and experiment. International Journal of Advanced Manufacturing Technology. 2010;49(9):1029-1036. [
Link] [
DOI:10.1007/s00170-009-2446-4]
15. Bagherzadeh S, Mirnia MJ, Mollaei Dariani B. Numerical and experimental investigations of hydro-mechanical deep drawing process of laminated aluminum/steel sheets. Journal of Manufacturing Processes. 2015;18:131-140. [
Link] [
DOI:10.1016/j.jmapro.2015.03.004]
16. Darabi R, Deilami Azodi H, Bagherzadeh S. Investigation into the effect of material properties and arrangement of each layer on the formability of bimetallic sheets. Journal of Manufacturing Processes. 2017;29:133-148. [
Link] [
DOI:10.1016/j.jmapro.2017.07.022]
17. Zahedi A, Mollaei Dariani B, Mirnia MJ. Experimental determination and numerical prediction of necking and fracture forming limit curves of laminated Al/Cu sheets using a damage plasticity model. International Journal of Mechanical Sciences. 2019;153-154:341-358. [
Link] [
DOI:10.1016/j.ijmecsci.2019.02.002]
18. Shabanpour M, Fallahi Arezoodar A. Numerical and experimental investigation of electromagnetic inward tube forming in coupled method. Journal of Mechanical Engineering Amirkabir. 2016;48(2):215-226. [Persian] [
Link]
19. Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: American Defense Preparedness Association. Seventh International Symposium on Ballistics: Proceedings: The Hague, the Netherlands, 19-21 April 1983. Unknwon City: American Defense Preparedness Association; 1983. [
Link]
20. Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics. 1985;21(1):31-48. [
Link] [
DOI:10.1016/0013-7944(85)90052-9]
21. Pierazzo E, Artemieva NA, Asphaug E, Baldwin EC, Cazamias J, Coker RF, et al. Validation of numerical codes for impact and explosion cratering: Impacts on strengthless and metal targets. Meteoritics & Planetary Science. 2008;43(12):1917-1938. [
Link] [
DOI:10.1111/j.1945-5100.2008.tb00653.x]
22. Li Y, Luo M, Gerlach J, Wierzbicki T. Prediction of shear-induced fracture in sheet metal forming. Journal of Materials Processing Technology. 2010;210(14):1858-1869. [
Link] [
DOI:10.1016/j.jmatprotec.2010.06.021]
23. Chen CY, Hwang WS. Effect of annealing on the interfacial structure of aluminum-copper joints. Materials Transactions. 2007;48(7): 1938-1934. [
Link] [
DOI:10.2320/matertrans.MER2006371]