Volume 20, Issue 10 (October 2020)                   Modares Mechanical Engineering 2020, 20(10): 2483-2494 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Vakili-Tahami F, Khoshravan M, H.Smit T, Rasoulian A. Analytical and Experimental Study of the Creep Behavior of Intervertebral Disc Tissue Affected by Temperature. Modares Mechanical Engineering 2020; 20 (10) :2483-2494
URL: http://mme.modares.ac.ir/article-15-42665-en.html
1- Department of Mechanical Engineering, Mechanical Engineering Faculty, University of Tabriz, Tabriz, Iran , f_vakili@tabrizu.ac.ir
2- Department of Mechanical Engineering, Mechanical Engineering Faculty, University of Tabriz, Tabriz, Iran
3- “Department of Orthopedic Surgery” and “Department of Medical Biology”, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
Abstract:   (1941 Views)
One of the most important and active body tissues during daily life is the intervertebral disc that not only sustains the applied loads to the spine but also it provides the required flexibility for doing different activities. This tissue as an important factor to carry applied loads to the body is always subjected to possible damages. Hence, due to the improvements in medical sciences in treatment or replacing these damaged tissues, investigating the mechanical behavior of the intervertebral disc and assessing the damage level is a major concern for the researchers. For this purpose, different tests should be carried out but to simulate the behavior of the disc more accurately, it is necessary to ensure that the test conditions are as close as possible to the real ones in the body. Hence, the aim of this research is to develop a set of creep constitutive equations that are based on the experimental investigation of the effect of temperature on the creep behavior of the intervertebral disc. To do this, compressive creep tests were carried out on the goat intervertebral disc tissue and the permeability and aggregate modulus were obtained based on fitting the biphasic constitutive equations with the experimental data. Statistical analyses of the experimental data reveal the significant effect of the temperature on the values of both material parameters and the creep behavior of the intervertebral disc, so that with increasing temperature permeability increases and aggregate modulus decreases or vice versa.
Full-Text [PDF 757 kb]   (1941 Downloads)    
Article Type: Original Research | Subject: Mechatronics
Received: 2020/05/6 | Accepted: 2020/08/13 | Published: 2020/10/21

References
1. Murray CJL, Barber RM, Foreman KJ, Ozgoren AA, Abd-Allah F, Abera SF, et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition. The Lancet. 2015;386(10009):2145-2191. [Link] [DOI:10.1016/S0140-6736(15)61340-X]
2. Hart LG, Deyo RA, Cherkin DC. Physician office visits for low back pain. Frequency, clinical evaluation, and treatment patterns from a US national survey. Spine. 1995;20(1):11-19. [Link] [DOI:10.1097/00007632-199501000-00003]
3. Jacobs JJ, Andersson GB, Bell JE, Weinstein SL, Dormans JP, Gnatz SM, et al. Spine: Low back and neck pain, in United State bone and joint initiative the burden of musculoskeletal disease in the United States. American Academy of Orthopedic Surgeons. 2011:21-56. [Link]
4. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: A systematic analysis for the global burden of disease study 2010. The Lancet. 2012;380(9859):2197-2223. [Link] [DOI:10.1016/S0140-6736(12)61689-4]
5. Cheung KMC, Karppinen J, Chan D, Ho DWH, Song YQ, Sham P, et al. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine. 2009;34(9):934-940. [Link] [DOI:10.1097/BRS.0b013e3181a01b3f]
6. Wang Y, Videman T, Battié MC. ISSLS prize winner: Lumbar vertebral endplate lesions associations with disc degeneration and back pain history. Spine. 2012;37(17):1490-1496. [Link] [DOI:10.1097/BRS.0b013e3182608ac4]
7. Raj PP. Intervertebral disc: Anatomy‐physiology‐pathophysiology‐treatment. Pain Practice. 2008;8(1):18-44. [Link] [DOI:10.1111/j.1533-2500.2007.00171.x]
8. Kelsey JL, White AA. Epidemiology and impact of low-back pain. Spine. 1980;5(2):133-142. [Link] [DOI:10.1097/00007632-198003000-00007]
9. Natali AN. A hyperelastic and almost incompressible material model as an approach to intervertebral disc analysis. Journal of Biomedical Engineering. 1991;13(2):163-168. [Link] [DOI:10.1016/0141-5425(91)90063-D]
10. Wagnac E, Arnoux PJ, Garo A, El-Rich M, Aubin CE. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads. Journal of Biomechanical Engineering. 2011;133(10):101007. [Link] [DOI:10.1115/1.4005224]
11. Holmes MH, Mow VC. The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. Journal of Biomechanics. 1990;23(11):1145-1156. [Link] [DOI:10.1016/0021-9290(90)90007-P]
12. Ateshian GA, Warden WH, Kim JJ, Grelsamer RP, Mow VC. Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. Journal of Biomechanics. 1997;30(11-12):1157-1164. [Link] [DOI:10.1016/S0021-9290(97)85606-0]
13. Best BA, Guilak F, Setton LA, Zhu W, Saed-Nejad F, Ratcliffe A, et al. Compressive mechanical properties of the human anulus fibrosus and their relationship to biochemical composition. Spine. 1994;19(2):212-221. [Link] [DOI:10.1097/00007632-199401001-00017]
14. Skaggs DL, Weidenbaum M, Iatridis JC, Ratcliffe A, Mow VC. Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus. Spine. 1994;19(12):1310-1319. [Link] [DOI:10.1097/00007632-199406000-00002]
15. Frijns AJH, Huyghe JM, Janssen JD. A validation of the quadriphasic mixture theory for intervertebral disc tissue. International Journal of Engineering Science. 1997;35(15):1419-1429. [Link] [DOI:10.1016/S0020-7225(97)00047-5]
16. Wagner DR, Lotz JC. Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus. Journal of Orthopaedic Research. 2004;22(4):901-909. [Link] [DOI:10.1016/j.orthres.2003.12.012]
17. Nikkhoo M, Haghpanahi M, Wang JL, Parnianpour M. A poroelastic finite element model to describe the time-dependent response of lumbar intervertebral disc. Journal of Medical Imaging and Health Informatics. 2011;1(3):246-251. [Link] [DOI:10.1166/jmihi.2011.1035]
18. Castro AP, Wilson W, Huyghe JM, Ito K, Alves JL. Intervertebral disc creep behavior assessment through an open source finite element solver. Journal of Biomechanics. 2014;47(1):297-301. [Link] [DOI:10.1016/j.jbiomech.2013.10.014]
19. Schmidt H, Bashkuev M, Galbusera F, Wilke HJ, Shirazi-Adl A. Finite element study of human lumbar disc nucleus replacements. Computer Methods in Biomechanics and Biomedical Engineering. 2014;17(16):1762-1776. [Link] [DOI:10.1080/10255842.2013.766722]
20. Velísková P, Bashkuev M, Shirazi-Adl A, Schmidt H. Computational study of the role of fluid content and flow on the lumbar disc response in cyclic compression: Replication of in vitro and in vivo conditions. Journal of Biomechanics. 2018;70:16-25. [Link] [DOI:10.1016/j.jbiomech.2017.10.032]
21. Palmer EI, Lotz JC. The compressive creep properties of normal and degenerated murine intervertebral discs. Journal of Orthopaedic Research. 2004;22(1):164-169. [Link] [DOI:10.1016/S0736-0266(03)00161-X]
22. Nikkhoo M, Wang JL, Parnianpour M, El-Rich M, Khalaf K. Biomechanical response of intact, degenerated and repaired intervertebral discs under impact loading-Ex-vivo and In-Silico investigation. Journal of Biomechanics. 2018;70:26-32. [Link] [DOI:10.1016/j.jbiomech.2018.01.026]
23. Mosayebi M, Mojra A. Assessing time-dependent response of intact and degenerated cervical intervertebral discs by employing a poroviscoelastic model based on experimental relaxation data. Iranian Journal of Biomedical Engineering. 2019;13(1):31-44. [Persian] [Link]
24. Smit TH, Odgaard A, Schneider E. Structure and function of vertebral trabecular bone. Spine. 1997;22(24):2823-2833. [Link] [DOI:10.1097/00007632-199712150-00005]
25. Holmes MH, Lai WM, Mow VC. Singular perturbation analysis of the nonlinear, flow-dependent compressive stress relaxation behavior of articular cartilage. Journal of Biomechanical Engineering. 1985;107(3):206-218. [Link] [DOI:10.1115/1.3138545]
26. Holmes MH. Finite deformation of soft tissue: analysis of a mixture model in uni-axial compression. Journal Biomechanical Engineering. 1986;108(4):372-381. [Link] [DOI:10.1115/1.3138633]
27. Mow VC, Kuei SC, Lai WM, Armstrong CG. Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments. Journal of Biomechanical Engineering. 1980;102(1):73-84. [Link] [DOI:10.1115/1.3138202]
28. Mow VC, Holmes MH, Lai WM. Fluid transport and mechanical properties of articular cartilage: A review. Journal of Biomechanics. 1984;17(5):377-394. [Link] [DOI:10.1016/0021-9290(84)90031-9]
29. Vakili-Tahami F, Khoshravan M, H. Smit T, Rasoulian A. The anisotropic effect of intervertebral disc tissue in confined compression test. Modares Mechanical Engineering. 2020;20(5):1115-1126. [Persian] [Link]
30. Schiff JL. The laplace transform: Theory and applications. Berlin: Springer Science & Business Media; 1999. [Link]
31. Oberhettinger F, Badii L. Tables of Laplace transforms. Berlin: Springer Science & Business Media; 1973. [Link] [DOI:10.1007/978-3-642-65645-3]
32. Vakil-Tahami F, Rasoulian A, Mohammad Alizadeh Fard A. Obtaining the creep constitutive parameters for the layers of butt-welded 1.25 Cr0. 5Mo pipe. Modares Mechanical Engineering. 2015;15(9):407-416. [Persian] [Link]
33. Vakili-Tahami F, Hassannejad Qadim R, Rasoulian A. Pareto discrete-continuous optimization of Sikorsky ASH-3D helicopter main gearbox. Modares Mechanical Engineering. 2015;14(16):170-180. [Persian] [Link]
34. Saadatmand Hashemi S, Asgari M. Development and calibration of 3D constitutive equations for nonlinear passive multi-axial finite deformations of skeletal muscles. Modares Mechanical Engineering. 2016;16(9):298-306. [Persian] [Link]
35. Chatterjee S, Hadi AS. Regression analysis by example. Hoboken: John Wiley & Sons; 2006. [Link] [DOI:10.1002/0470055464]
36. Vakili-Tahami F, Rasoulian A, Saadatmand Hashemi S. Optimization methods for the weight of Agusta helicopter main gearbox. Journal of Mechanical Engineering. 2018;48(3):347-354. [Persian] [Link]
37. Saadatmand Hashemi S, Asgari M, Rasoulian A. An experimental study of nonlinear rate-dependent behaviour of skeletal muscle to obtain passive mechanical properties. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2020;234(6):590-602. [Link] [DOI:10.1177/0954411920909705]
38. Oehlert GW. A first course in design and analysis of experiments. New York: Freeman WH and Company; 2010. [Link]
39. Bohm G, Zech G. Introduction to statistics and data analysis for physicists. Hamburg: Desy; 2010. [Link]
40. Bellavia G, Giuffrida S, Cottone G, Cupane A, Cordone L. Protein thermal denaturation and matrix glass transition in different protein−trehalose−water systems. The Journal of Physical Chemistry B. 2011;115(19):6340-6346. [Link] [DOI:10.1021/jp201378y]
41. Chen SF, Chan RC, Read SM, Bromley LA. Viscosity of sea water solutions. Desalination. 1973;13(1):37-51. [Link] [DOI:10.1016/S0011-9164(00)80090-9]
42. Torzilli PA. Influence of cartilage conformation on its equilibrium water partition. Journal of Orthopaedic Research. 1985;3(4):473-483. [Link] [DOI:10.1002/jor.1100030410]
43. Wilke HJ, Kettler A, Wenger KH, Claes LE. Anatomy of the sheep spine and its comparison to the human spine. The Anatomical Record. 1997;247(4):542-555. https://doi.org/10.1002/(SICI)1097-0185(199704)247:4<542::AID-AR13>3.0.CO;2-P [Link] [DOI:10.1002/(SICI)1097-0185(199704)247:43.0.CO;2-P]
44. Kandziora F, Pflugmacher R, Scholz M, Schnake K, Lucke M, Schröder R, et al. Comparison between sheep and human cervical spines: an anatomic, radiographic, bone mineral density, and biomechanical study. Spine. 2001;26(9):1028-1037. [Link] [DOI:10.1097/00007632-200105010-00008]
45. Beckstein JC, Sen S, Schaer TP, Vresilovic EJ, Elliott DM. Comparison of animal discs used in disc research to human lumbar disc: Axial compression mechanics and glycosaminoglycan content. Spine. 2008;33(6):166-173. [Link] [DOI:10.1097/BRS.0b013e318166e001]
46. Hoogendoorn RJ, Wuisman PI, Smit TH, Everts VE, Helder MN. Experimental intervertebral disc degeneration induced by chondroitinase ABC in the goat. Spine. 2007;32(17):1816-1825. [Link] [DOI:10.1097/BRS.0b013e31811ebac5]
47. Krijnen MR, Mensch D, Van Dieen JH, Wuisman PI, Smit TH. Primary spinal segment stability with a stand-alone cage: In vitro evaluation of a successful goat model. Acta Orthopaedica. 2006;77(3):454-461. [Link] [DOI:10.1080/17453670610046398]
48. Emanuel KS, Van Der Veen AJ, Rustenburg C, Smit TH, Kingma I. Osmosis and viscoelasticity both contribute to time-dependent behaviour of the intervertebral disc under compressive load: A caprine in vitro study. Journal of Biomechanics. 2018;70:10-5. [Link] [DOI:10.1016/j.jbiomech.2017.10.010]
49. Cortes DH, Jacobs NT, DeLucca JF, Elliott DM. Elastic, permeability and swelling properties of human intervertebral disc tissues: A benchmark for tissue engineering. Journal of Biomechanics. 2014;47(9):2088-2094. [Link] [DOI:10.1016/j.jbiomech.2013.12.021]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.