Volume 20, Issue 9 (September 2020)                   Modares Mechanical Engineering 2020, 20(9): 2313-2329 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ziya-Shamami M, Babaei H, Mirzababaie Mostofi T, Khodarahmi H. Behavior of Monolithic and Multi-Layered Aluminum Plates under Multiple Uniform Impulsive Loading: Experimental Study and Neural Network Modelling. Modares Mechanical Engineering 2020; 20 (9) :2313-2329
URL: http://mme.modares.ac.ir/article-15-43522-en.html
1- Mechanical Engineering Department, Mechanical Engineering Faculty, University of Guilan, Rasht, Iran
2- Mechanical Engineering Department, Mechanical Engineering Faculty, University of Guilan, Rasht, Iran , ghbabaei@guilan.ac.ir
3- Mechanical Engineering Department, Mechanical Engineering Faculty, University of Eyvanekey, Eyvanekey, Iran
Abstract:   (2391 Views)
In this paper, the large inelastic deformation and failure mechanism of single and multi-layered circular plates under repeated uniform impulsive loading were studied. The ballistic pendulum was used to conduct a series of experiments (67 experiments) on aluminum alloy plates with different structural configurations. Three different layering configurations including single, double, and triple-layered plates made of the same material were considered and tested for the range of charge masses from 1.5g to 12.5g up to five times for repeated loading. The experimental results indicated large plastic global deformation with thinning happening at the clamped boundary and also tearing for some experiments. The results also represented that the maximum permanent deflections of plates were increased by the increase of the charge mass and the number of blast loads. On the other hand, the progressive deflection of the plates at the center was decreased exponentially with increasing the number of blasts. Furthermore, in the numerical modeling section, the Group Method of Data Handling (GMDH) neural network was used to present a mathematical model based on dimensionless numbers to predict the maximum permanent deflection of single and multi-layered circular plates under repeated impulsive loading. In order to increase the prediction capability of the proposed neural network for this process, the experimental data were divided into two training and prediction sets. Good agreement between the proposed model and the corresponding experimental results is obtained and all and 77% of data points are within the <10% error range for single and multi-layered plates, respectively.
Full-Text [PDF 1206 kb]   (4297 Downloads)    
Article Type: Original Research | Subject: Metal Forming
Received: 2020/06/8 | Accepted: 2020/07/8 | Published: 2020/09/20

References
1. Babaei H, Mirzababaei Mostofi T, Sadraei SH. Effect of gas detonation on response of circular plate-experimental and theoretical. Structural Engeering Mechanics. 2015;56(4):535-548. [Link] [DOI:10.12989/sem.2015.56.4.535]
2. Mirzababaei Mostofi T, Babaei H, Alitavoli M. Theoretical analysis on the effect of uniform and localized impulsive loading on the dynamic plastic behaviour of fully clamped thin quadrangular plates. Thin-Walled Structures. 2016;109:367-376. [Link] [DOI:10.1016/j.tws.2016.10.009]
3. Mirzababaie Mostofi T, Babaei H, Alitavoli M. Experimental and theoretical study on large ductile transverse deformations of rectangular plates subjected to shock load due to gas mixture detonation. Strain. 2017;53(1):12235. [Link] [DOI:10.1111/str.12235]
4. Mirzababaie Mostofi T, Golbaf A, Mahmoudi A, Alitavoli M, Babaei H. Closed-form analytical analysis on the effect of coupled membrane and bending strains on the dynamic plastic behaviour of fully clamped thin quadrangular plates due to uniform and localized impulsive loading. Thin-Walled Structures. 2018;123:48-56. [Link] [DOI:10.1016/j.tws.2017.11.010]
5. Babaei H, Mirzababaie Mostofi T, Alitavoli M. Experimental investigation and analytical modelling for forming of circular-clamped plates by using gases mixture detonation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2020;234(5):1102-1111. [Link] [DOI:10.1177/0954406215614336]
6. Jones N. Structural impact. Cambridge: Cambridge University Press; 1997. [Link]
7. Yuen SCK, Nurick GN, Langdon GS, Iyer Y. Deformation of thin plates subjected to impulsive load: Part III-an update 25 years on. International Journal of Impact Engineering. 2017;107:108-117. [Link] [DOI:10.1016/j.ijimpeng.2016.06.010]
8. Zhao YP. Suggestion of a new dimensionless number for dynamic plastic response of beams and plates. Archive of Applied Mechanics. 1998;68(7-8):524-538. [Link] [DOI:10.1007/s004190050184]
9. Rajendran R, Lee JM. Blast loaded plates. Marine Structures. 2009;22(2):99-127. [Link] [DOI:10.1016/j.marstruc.2008.04.001]
10. Rudrapatna NS, Vaziri R, Olson MD. Deformation and failure of blast-loaded square plates. International Journal of Impact Engineering. 1999;22(4):449-467. [Link] [DOI:10.1016/S0734-743X(98)00046-3]
11. Mirzababaei Mostofi T, Sayah Badkhor M, Rezasefat M, Ozbakkaloglu T, Babaei H. Gas mixture detonation load on polyurea-coated aluminum plates. Thin-Walled Structures. 2020;155:106851. [Link] [DOI:10.1016/j.tws.2020.106851]
12. Yuen SCK, Nurick GN, Verster W, Jacob N, Vara AR, Balden VH, et al. Deformation of mild steel plates subjected to large-scale explosions. International Journal of Impact Engineering. 2008;35(8):684-703. [Link] [DOI:10.1016/j.ijimpeng.2008.02.001]
13. Rezasefat M, Mirzababaie Mostofi T, Babaei H, Ziya-Shamami M, Alitavoli M. Dynamic plastic response of double-layered circular metallic plates due to localized impulsive loading. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2019;233(7):1449-1471. [Link] [DOI:10.1177/1464420718760640]
14. Rezasefat M, Mirzababaie Mostofi T, Ozbakkaloglu T. Repeated localized impulsive loading on monolithic and multi-layered metallic plates. Thin-Walled Structures. 2019;144:106332. [Link] [DOI:10.1016/j.tws.2019.106332]
15. Børvik T, Hanssen AG, Langseth M, Olovsson L. Response of structures to planar blast loads-A finite element engineering approach. Computers & Structures. 2009;87(9-10):507-520. [Link] [DOI:10.1016/j.compstruc.2009.02.005]
16. Cullis IG, Schofield J, Whitby A. Assessment of blast loading effects-Types of explosion and loading effects. International Journal of Pressure Vessels and Piping. 2010;87(9):493-503. [Link] [DOI:10.1016/j.ijpvp.2010.07.003]
17. Soutis C, Mohamed G, Hodzic A. Modelling the structural response of GLARE panels to blast load. Composite Structures. 2011;94(1):267-276. [Link] [DOI:10.1016/j.compstruct.2011.06.014]
18. Spranghers K, Vasilakos I, Lecompte D, Sol H, Vantomme J. Numerical simulation and experimental validation of the dynamic response of aluminum plates under free air explosions. International Journal of Impact Engineering. 2013;54:83-95. [Link] [DOI:10.1016/j.ijimpeng.2012.10.014]
19. Mehreganian N, Louca LA, Langdon GS, Curry RJ, Abdul-Karim N. The response of mild steel and armour steel plates to localised air-blast loading-comparison of numerical modelling techniques. International Journal of Impact Engineering. 2018;115:81-93. [Link] [DOI:10.1016/j.ijimpeng.2018.01.010]
20. Henchie TF, Yuen SCK, Nurick GN, Ranwaha N, Balden VH. The response of circular plates to repeated uniform blast loads: An experimental and numerical study. International Journal of Impact Engineering. 2014;74:36-45. [Link] [DOI:10.1016/j.ijimpeng.2014.02.021]
21. Truong DD, Jung HJ, Shin HK, Cho SR. Response of low-temperature steel beams subjected to single and repeated lateral impacts. International Journal of Naval Architecture and Ocean Engineering. 2018;10(6):670-682. [Link] [DOI:10.1016/j.ijnaoe.2017.10.002]
22. Zhu L, Guo K, Li Y, Yu TX, Zhou Q. Experimental study on the dynamic behaviour of aluminium foam sandwich plates under single and repeated impacts at low temperature. International Journal of Impact Engineering. 2018;114:123-132. [Link] [DOI:10.1016/j.ijimpeng.2017.12.001]
23. Zhu L, Shi S, Jones N. Dynamic response of stiffened plates under repeated impacts. International Journal of Impact Engineering. 2018;117:113-122. [Link] [DOI:10.1016/j.ijimpeng.2018.03.006]
24. Zhou Y, Ji C, Long Y, Yu Y, Li Y, Wang T. Experimental studies on the deformation and damage of steel cylindrical shells subjected to double-explosion loadings. Thin-Walled Structures. 2018;127:469-482. [Link] [DOI:10.1016/j.tws.2018.02.019]
25. Guo K, Zhu L, Li Y, Yu TX, Shenoi A, Zhou Q. Experimental investigation on the dynamic behaviour of aluminum foam sandwich plate under repeated impacts. Composite Structures. 2018;200:298-305. [Link] [DOI:10.1016/j.compstruct.2018.05.148]
26. Jamali A, Babaei H, Nariman-Zadeh N, Ashraf Talesh S, Mirzababaie Mostofi T. Multi-objective optimum design of ANFIS for modelling and prediction of deformation of thin plates subjected to hydrodynamic impact loading. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2020;234(3):368-378 [Link] [DOI:10.1177/1464420716660332]
27. Ivakhnenko AG. Polynomial theory of complex systems. IEEE Transactions on Systems, Man, and Cybernetics. 1971;1(4):364-378. [Link] [DOI:10.1109/TSMC.1971.4308320]
28. Nurick GN, Martin JB. Deformation of thin plates subjected to impulsive loading-a review part II: Experimental studies. International Journal of Impact Engineering. 1989;8(2):171-186. [Link] [DOI:10.1016/0734-743X(89)90015-8]
29. Nurick GN, Martin JB. Deformation of thin plates subjected to impulsive loading-a review: Part I: Theoretical considerations. International Journal of Impact Engineering. 1989;8(2):159-170. [Link] [DOI:10.1016/0734-743X(89)90014-6]
30. Li QM, Jones N. On dimensionless numbers for dynamic plastic response of structural members. Archive of Applied Mechanics. 2000;70(4):245-254. [Link] [DOI:10.1007/s004199900072]
31. Park BW, Cho SR. Simple design formulae for predicting the residual damage of unstiffened and stiffened plates under explosion loadings. International Journal of Impact Engineering. 2006;32(10):1721-1736. [Link] [DOI:10.1016/j.ijimpeng.2005.01.005]
32. Jacob N, Nurick GN, Langdon GS. The effect of stand-off distance on the failure of fully clamped circular mild steel plates subjected to blast loads. Engineering Structures. 2007;29(10):2723-2736. [Link] [DOI:10.1016/j.engstruct.2007.01.021]
33. Babaei H, Darvizeh A. Investigation into the response of fully clamped circular steel, copper, and aluminum plates subjected to shock loading. Mechanics Based Design of Structures and Machines. 2011;39(4):507-526. [Link] [DOI:10.1080/15397734.2011.583204]
34. Gharababaei H, Nariman-Zadeh N, Darvizeh A. A simple modelling method for deflection of circular plates under impulsive loading using dimensionless analysis and singular value decomposition. Journal of Mechanics. 2010;26(3):355-361. [Link] [DOI:10.1017/S1727719100003919]
35. Babaei H, Darvizeh A. Analytical study of plastic deformation of clamped circular plates subjected to impulsive loading. Journal of Mechanics of Materials and Structures. 2012;7(4):309-322. [Link] [DOI:10.2140/jomms.2012.7.309]
36. Babaei H, Darvizeh A, Darvizeh M. Analytical and experimental studies for deformation of circular plates subjected to blast loading. Journal of Mechanical Science and Technology. 2010;24(9):1855-1864. [Link] [DOI:10.1007/s12206-010-0602-2]
37. Babaei H, Mirzababaei Mostofi T, Alitavoli M. Study on the response of circular thin plate under low velocity impact. Geomechanics and Engineering. 2015;9(2):207-218. [Link] [DOI:10.12989/gae.2015.9.2.207]
38. Aune V, Fagerholt E, Hauge KO, Langseth M, Børvik T. Experimental study on the response of thin aluminium and steel plates subjected to airblast loading. International Journal of Impact Engineering. 2016;90:106-121. [Link] [DOI:10.1016/j.ijimpeng.2015.11.017]
39. Babaei H, Mirzababaei Mostofi T, Alitavoli M. Experimental and analytical investigation into large ductile transverse deformation of monolithic and multi-layered metallic square targets struck normally by rigid spherical projectile. Thin-Walled Structures. 2016;107:257-265. [Link] [DOI:10.1016/j.tws.2016.06.013]
40. Babaei H, Mirzababaei Mostofi T, Alitavoli M, Darvizeh A. Empirical modelling for prediction of large deformation of clamped circular plates in gas detonation forming process. Experimental Techniques. 2016;40(6):1485-1494 [Link] [DOI:10.1007/s40799-016-0063-3]
41. Babaei H, Mirzababaie Mostofi T, Armoudli E. On dimensionless numbers for the dynamic plastic response of quadrangular mild steel plates subjected to localized and uniform impulsive loading. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2017;231(5):939-950. [Link] [DOI:10.1177/0954408916650713]
42. Babaei H, Mirzababaie Mostofi T, Alitavoli M, Saeidinejad A. Experimental investigation and dimensionless analysis of forming of rectangular plates subjected to hydrodynamic loading. Journal of Applied Mechanics and Technical Physics. 2017;58(1):139-147. [Link] [DOI:10.1134/S0021894417010151]
43. Mirzababaie Mostofi T, Babaei H, Alitavoli M. The influence of gas mixture detonation loads on large plastic deformation of thin quadrangular plates: Experimental investigation and empirical modelling. Thin-Walled Structures. 2017;118:1-11. [Link] [DOI:10.1016/j.tws.2017.04.031]
44. Mirzababaie Mostofi T, Babaei H, Alitavoli M, Hosseinzadeh S. On dimensionless numbers for predicting large ductile transverse deformation of monolithic and multi-layered metallic square targets struck normally by rigid spherical projectile. Thin-Walled Structures. 2017;112:118-124. [Link] [DOI:10.1016/j.tws.2016.12.014]
45. Babaei H, Mirzababaie Mostofi T. New dimensionless numbers for deformation of circular mild steel plates with large strains as a result of localized and uniform impulsive loading. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2020;234(2):231-245. [Link] [DOI:10.1177/1464420716654195]
46. Babaei H, Mirzababaie Mostofi T. Modeling and prediction of fatigue life in composite materials by using singular value decomposition method. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2020;234(2):246-254. [Link] [DOI:10.1177/1464420716660875]
47. Teeling-Smith RG, Nurick GN. The deformation and tearing of thin circular plates subjected to impulsive loads. International Journal of Impact Engineering. 1991;11(1):77-91. [Link] [DOI:10.1016/0734-743X(91)90032-B]
48. Aström KJ, Eykhoff P. System identification-a survey. Automatica. 1971;7(2):123-162. [Link] [DOI:10.1016/0005-1098(71)90059-8]
49. Lee DW, Seo SW, Sim KB. Online evolution for cooperative behavior in group robot systems. International Journal of Control, Automation, and Systems. 2008;6(2):282-287. [Link]
50. Farlow SJ. Self organizing methods in modeling: GMDH type algorithms. Boca Raton: CRC Press; 1984. [Link]
51. Nariman-Zadeh N, Darvizeh A, Jamali A, Moeini A. Evolutionary design of generalized polynomial neural networks for modelling and prediction of explosive forming process. Journal of Materials Processing Technology. 2005;164-165:1561-1571 [Link] [DOI:10.1016/j.jmatprotec.2005.02.020]
52. Nariman-Zadeh N, Atashkari K, Jamali A, Pilechi A, Yao X. Inverse modelling of multi-objective thermodynamically optimized turbojet engines using GMDH-type neural networks and evolutionary algorithms. Engineering Optimization. 2005;37(5):437-462. [Link] [DOI:10.1080/03052150500035591]
53. Jamali A, Hajiloo A, Nariman-Zadeh N. Reliability-based robust Pareto design of linear state feedback controllers using a multi-objective uniform-diversity genetic algorithm (MUGA). Expert Systems with Applications. 2010;37(1):401-413. [Link] [DOI:10.1016/j.eswa.2009.05.048]
54. Nariman-Zadeh N, Darvizeh A, Felezi ME, Gharababaei H. Polynomial modelling of explosive compaction process of metallic powders using GMDH-type neural networks and singular value decomposition. Modelling and Simulation in Materials Science and Engineering. 2002;10(6):727. [Link] [DOI:10.1088/0965-0393/10/6/308]
55. Mirzababaei Mostofi T, Babaei H, Alitavoli M, Lu G, Ruan D. Large transverse deformation of double-layered rectangular plates subjected to gas mixture detonation load. International Journal of Impact Engineering. 2019;125:93-106. [Link] [DOI:10.1016/j.ijimpeng.2018.11.005]
56. Jones N. Dynamic inelastic response of strain rate sensitive ductile plates due to large impact, dynamic pressure and explosive loadings. International Journal of Impact Engineering. 2014;74:3-15. [Link] [DOI:10.1016/j.ijimpeng.2013.05.003]
57. Babaei H, Mirzababaie Mostofi T, Alitavoli M. Experimental and theoretical study of large deformation of rectangular plates subjected to water hammer shock loading. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2017;231(3):490-496. [Link] [DOI:10.1177/0954408915611055]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.