1. Li SF, Liu ZH, Wang XJ. A comprehensive review on positive cold energy storage technologies and applications in air conditioning with phase change materials. Applied Energy. 2019 Dec 1;255:113667. [
DOI:10.1016/j.apenergy.2019.113667]
2. Feng PH, Zhao BC, Wang RZ. Thermophysical heat storage for cooling, heating, and power generation: A review. Applied Thermal Engineering. 2020 Feb 5;166:114728. [
DOI:10.1016/j.applthermaleng.2019.114728]
3. Zhao Y, Zhang X, Xu X, Zhang S. Research progress in nucleation and supercooling induced by phase change materials. Journal of Energy Storage. 2020 Feb 1;27:101156. [
DOI:10.1016/j.est.2019.101156]
4. Yu C, Peng Q, Liu X, Cao P, Yao F. Role of metal foam on ice storage performance for a cold thermal energy storage (CTES) system. Journal of Energy Storage. 2020 Apr 1;28:101201. [
DOI:10.1016/j.est.2020.101201]
5. Dinker A, Agarwal M, Agarwal GD. Heat storage materials, geometry and applications: A review. Journal of the Energy Institute. 2017 Feb 1;90(1):1-1. [
DOI:10.1016/j.joei.2015.10.002]
6. Khodadadi JM, Hosseinizadeh SF. Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. International communications in heat and mass transfer. 2007 May 1;34(5):534-43. (in persian). [
DOI:10.1016/j.icheatmasstransfer.2007.02.005]
7. Elbahjaoui R, El Qarnia H. Thermal analysis of nanoparticle-enhanced phase change material solidification in a rectangular latent heat storage unit including natural convection. Energy and Buildings. 2017 Oct 15;153:1-7. [
DOI:10.1016/j.enbuild.2017.08.003]
8. Liu Y, Li X, Hu P, Hu G. Study on the supercooling degree and nucleation behavior of water-based graphene oxide nanofluids PCM. International Journal of Refrigeration. 2015 Feb 1;50:80-6. [
DOI:10.1016/j.ijrefrig.2014.10.019]
9. Okuda A, Nagasawa T, Okawa S, Saito A. Research on solidification of water on surface. InProceedings of 14th International Conference on the Properties of Water and Steam 2004.
10. Kiani H, Zhang Z, Sun DW. Effect of ultrasound irradiation on ice crystal size distribution in frozen agar gel samples. Innovative food science & emerging technologies. 2013 Apr 1;18:126-31. [
DOI:10.1016/j.ifset.2013.02.007]
11. Chen MW, Mi JX, Wang ZD. The effect of oscillatory flow on nucleation and grain growth in the undercooled melt. Journal of Crystal Growth. 2017 Jun 15;468:32-7. [
DOI:10.1016/j.jcrysgro.2016.11.008]
12. Liu J, Janjua ZA, Roe M, Xu F, Turnbull B, Choi KS, Hou X. Super-hydrophobic/icephobic coatings based on silica nanoparticles modified by self-assembled monolayers. Nanomaterials. 2016 Dec;6(12):232. [
DOI:10.3390/nano6120232]
13. Zhang P, Lv FY. A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications. Energy. 2015 Mar 15;82:1068-87. [
DOI:10.1016/j.energy.2015.01.061]
14. Kiyomura IS, Manetti LL, Da Cunha AP, Ribatski G, Cardoso EM. An analysis of the effects of nanoparticles deposition on characteristics of the heating surface and ON pool boiling of water. International Journal of Heat and Mass Transfer. 2017 Mar 1;106:666-74. [
DOI:10.1016/j.ijheatmasstransfer.2016.09.051]
15. Kim MH, Kim DR, Lee KS. Stochastic approach to the anti-freezing behaviors of superhydrophobic surfaces. International Journal of Heat and Mass Transfer. 2017 Mar 1;106:841-6. [
DOI:10.1016/j.ijheatmasstransfer.2016.10.015]
16. Ismail KA, Lino FA. Fins and turbulence promoters for heat transfer enhancement in latent heat storage systems. Experimental thermal and fluid science. 2011 Sep 1;35(6):1010-8. [
DOI:10.1016/j.expthermflusci.2011.02.002]
17. Jannesari H, Abdollahi N. Experimental and numerical study of thin ring and annular fin effects on improving the ice formation in ice-on-coil thermal storage systems. Applied Energy. 2017 Mar 1;189:369-84. (in persian). [
DOI:10.1016/j.apenergy.2016.12.064]
18. Languri EM, Aigbotsua CO, Alvarado JL. Latent thermal energy storage system using phase change material in corrugated enclosures. Applied thermal engineering. 2013 Jan 10;50(1):1008-14. [
DOI:10.1016/j.applthermaleng.2012.07.012]
19. Hamzeh HA, Miansari M. Numerical study of tube arrangement and fin effects on improving the ice formation in ice-on-coil thermal storage systems. International Communications in Heat and Mass Transfer. 2020 Apr 1;113:104520.(in persian). [
DOI:10.1016/j.icheatmasstransfer.2020.104520]
20. Morales-Fuentes A, Loredo-Sáenz YA. Identifying the geometry parameters and fin type that lead to enhanced performance in tube-and-fin geometries. Applied Thermal Engineering. 2018 Feb 25;131:793-805. [
DOI:10.1016/j.applthermaleng.2017.12.057]
21. Rajasekharan S, Kubair VG, Kuloor NR. Heat transfer to non-Newtonian fluids in coiled pipes in laminar flow. International Journal of Heat and Mass Transfer. 1970 Oct 1;13(10):1583-94. [
DOI:10.1016/0017-9310(70)90054-2]
22. Habeebullah BA. An experimental study on ice formation around horizontal long tubes. International Journal of Refrigeration. 2007 Aug 1;30(5):789-97. (in persian). [
DOI:10.1016/j.ijrefrig.2006.12.007]
23. Bai J, Pan J, Wang W, Wang K, Wu G. Ice formation prediction and heat transfer analysis of LNG in serpentine tube under supercritical pressure. International Journal of Thermal Sciences. 2020 Mar 1;149:106137. [
DOI:10.1016/j.ijthermalsci.2019.106137]
24. Fox RW, McDonald AT, Mitchell JW. Fox and McDonald's introduction to fluid mechanics. John Wiley & Sons; 2020 Jun 30.