Volume 22, Issue 3 (March 2022)                   Modares Mechanical Engineering 2022, 22(3): 153-165 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

ghamari V, Hajabdollahi H. Thermoeconomic evaluation of using thermal energy storage tank in the cogeneration production system of heating, power (CHP), and freshwater. Modares Mechanical Engineering 2022; 22 (3) :153-165
URL: http://mme.modares.ac.ir/article-15-51280-en.html
1- M.Sc, Department of Mechanical Engineering, Faculty of Engineering, Rafsanjan Valiasr University, Rafsanjan, Iran , v.ghamari@stu.vru.ac.ir
2- Department of Mechanical Engineering, Faculty of Engineering, Rafsanjan Valiasr University, Rafsanjan, Iran
Abstract:   (2750 Views)
The design and optimization of multiple production systems, including systems that simultaneously generate heat, power and freshwater, play an important role in improving the performance of these systems. In this study, after modeling a multi-effect evaporative desalination system MED and simultaneous heat and power generation CHP, they are combined to meet the demand for heating, power and fresh water for a hotel. The purpose of this study is the thermoeconomic evaluation of the use of thermal energy storage TES tank in the combined system CHP + MED compared to the non-use of this tank. The strategy is applied every 24 hours of the two seasons. In optimizing this system, the annual cost minimization has been done as a objective function and using genetic algorithm. Optimal technical results in these systems show that the system CHP + MED + TES requires a gas turbine with a nominal capacity of 12% larger and a backup boiler with a nominal capacity of 7.14% smaller than the system CHP + MED. The optimal results of the economic comparison show that by using the thermal energy storage tank in the combined system CHP + MED, the annual cost is improved by 4.91%.
Full-Text [PDF 1179 kb]   (1552 Downloads)    
Article Type: Original Research | Subject: Thermal Power Plant
Received: 2021/04/1 | Accepted: 2021/07/24 | Published: 2022/01/30

References
1. Baniassadi A, Momen M, Shirinbakhsh M, Amidpour M, Application of R-curve analysis in evaluating the effect of integrating renewable energies in cogeneration systems. Applied Thermal Engineering. 2016; 93: 297-307. [DOI:10.1016/j.applthermaleng.2015.09.101]
2. Dincer I, Rosen M A, Chapter 13 - Exergy analyses of cogeneration and district energy systems. Editor(s): Ibrahim Dincer, Marc A. Rosen, Exergy (Third Edition). Elsevier. 2021; 355-381. [DOI:10.1016/B978-0-12-824372-5.00013-0]
3. Wang X, van Dam KH, Triantafyllidis C, Koppelaar RHEM, Shah N. Energy-water nexus design and operation towards the sustainable development goals. Computers Chemical Engineering. 2019; 124:162-71. [DOI:10.1016/j.compchemeng.2019.02.007]
4. Pugsley A, Zacharopoulos A, Mondol JD, Smyth M. Global applicability of solar desalination. Renew Energy 2016; 88:200-19. [DOI:10.1016/j.renene.2015.11.017]
5. A. Tamburini, A. Cipollina, G. Micale, A. Piacentino. CHP (combined heat and power) retrofit for a large MED-TVC (multiple effect distillation along with thermal vapour compression) desalination plant: high efficiency assessment for different design options under the current legislative EU framework, Energy. 2016; 115 (3): 1548-1559. [DOI:10.1016/j.energy.2016.03.066]
6. Mansouri M T, Amidpour M, Ponce-Ortega J M. Optimization of the integrated power and desalination plant with algal cultivation system compromising the energy water-environment nexus, Sustainable Energy Technologies and Assessments. 2020; 42: 100879. [DOI:10.1016/j.seta.2020.100879]
7. E. Cardona, A. Piacentino, F. Marchese. Performance evaluation of CHP hybrid seawater desalination plants, Desalination. 2007; 205: 1-14. [DOI:10.1016/j.desal.2006.02.048]
8. Salimi M, Amidpour M. Modeling, simulation, parametric study and economic assessment of reciprocating internal combustion engine integrated with multi-effect desalination unit. Energy Conversion and Management. 2017; 138: 299-311. [DOI:10.1016/j.enconman.2017.01.080]
9. Harandi H B, Asadi A, Rahnama M, Shen Z G, Sui P C. Modeling and multi-objective optimization of integrated MED-TVC desalination system and gas power plant for waste heat harvesting. Computers & Chemical Engineering. 2021; 149: 107294. [DOI:10.1016/j.compchemeng.2021.107294]
10. Khoshgoftar Manesh M H, Firouzi P, Kabiri S, Blanco-Marigorta A M. Evaluation of power and freshwater production based on integrated gas turbine, S-CO2, and ORC cycles with RO desalination unit. Energy Conversion and Management. 2021; 228: 113607. [DOI:10.1016/j.enconman.2020.113607]
11. Benalcazar P. Optimal sizing of thermal energy storage systems for CHP plants considering specific investment costs: A case study. Energy. 2021; 234: 121323. [DOI:10.1016/j.energy.2021.121323]
12. Lepiksaar K, Mašatin V, Latõšov E, Siirde A, Volkova A. Improving CHP flexibility by integrating thermal energy storage and power-to-heat technologies into the energy system. Smart Energy. 2021; 2: 100022. [DOI:10.1016/j.segy.2021.100022]
13. Hajabdollahi H. Evaluation of cooling and thermal energy storage tanks in optimization of multi-generation system. Journal of Energy Storage. 2015; 4: 1-13. [DOI:10.1016/j.est.2015.08.004]
14. Al-Mutaz I S, Wazeer I, Development of a steady-state mathematical model for MEE-TVC desalination plants. Desalination. 2014; 351: 9-18. [DOI:10.1016/j.desal.2014.07.018]
15. Ettouney H M, El-Dessouky H. Fundamentals of salt water desalination. 2002.52.
16. Miyatake O, Murakami K, Kawata Y, Fujii, Fundamental experiments with flash evaporation. Heat Transf. Jpn. Res. 1973; 2: 89-100.52.
17. Hajabdollahi H, Ganjehkaviri A, Nazri Mohd Jaafar M. Assessment of new operational strategy in optimization of CCHP plant for different climates using evolutionary algorithms. Applied Thermal Engineering. 2015; 75: 468-480. [DOI:10.1016/j.applthermaleng.2014.09.033]
18. Hajabdollahi H. Investigating the effects of load demands on selection of optimum CCHP-ORC plant, Applied Thermal Engineering. 2015; 87: 547-558. [DOI:10.1016/j.applthermaleng.2015.05.050]
19. Sanaye S, Hajabdollahi H. Comparison of different scenarios in optimal design of a CCHP plant. http://pie.sagepub.com/content/early/2014/08/16/0954408914547070.refs.htm.
20. Esrafilian M, Ahmadi R, Energy, environmental and economic assessment of a poly generation system of local desalination and CCHP. Desalination. 2019; 454: 20-37. [DOI:10.1016/j.desal.2018.12.004]
21. Ashour M M, Steady state analysis of the TripoliWest LT-HT-MED plant. Desalination. 2003; 152: (1) 191-194. [DOI:10.1016/S0011-9164(02)01062-7]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.