دوره 22، شماره 4 - ( فروردین 1401 )                   جلد 22 شماره 4 صفحات 252-243 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rafiei J, Ghasemi A R. Experimental study on laser cladding process parameters of martensitic stainless steel powder on Plain Carbon Steel: Cladding Geometry, dilution Ratio and Sample Hardness. Modares Mechanical Engineering 2022; 22 (4) :243-252
URL: http://mme.modares.ac.ir/article-15-53615-fa.html
رفیعی جواد، قاسمی احمدرضا. مطالعه‌ی تجربی پارامترهای فرآیند روکش‌کاری لیزری پودر فولاد مارتنزیت بر روی فولاد ساده کربنی: هندسه‌ی روکش، نسبت آمیختگی و سختی نمونه. مهندسی مکانیک مدرس. 1401; 22 (4) :243-252

URL: http://mme.modares.ac.ir/article-15-53615-fa.html


1- دانشکده مهندسی مکانیک، دانشگاه کاشان، کاشان
2- دانشکده مهندسی مکانیک، دانشگاه کاشان، کاشان ، ghasemi@kashanu.ac.ir
چکیده:   (2110 مشاهده)
روکش ­کاری لیزری قطعات مختلف صنعتی برای مقاوم­ سازی و بهبود خواص مکانیکی آنها توسط آلیاژها و کامپوزیت­های فلزی، مورد توجه محققان و صنعت بوده است. کیفیت و خصوصیات لایه­ ی روکشی توسط عوامل زیادی از قبیل هندسه­ ی روکش، ریزساختار، میزان آمیختگی، وجود نقص، اعوجاج، صافی­ سطح، تغییرات متالورژیکی در زیر­لایه و بازدهی فرآیند مشخص و تعیین می­ شود. در این مقاله لایه روکشی پودر فولاد زنگ نزن مارتنزیتی (PH4-17) بر روی زیر­لایه ­ی فولاد ساده ­ی کربنی توسط لیزر پیوسته­ ی حالت جامد با حداکثر توان 2 کیلو وات و روش رسوب مستقیم پودر فلز ایجاد شد. مطلوب­ترین پارامترهای مهم فرآیند درایجاد سخت­ترین لایه با کمترین میزان آمیختگی تعیین شد. اثر توان لیزر، نرخ تغذیه­ی پودر، سرعت حرکت لیزر و فاصله محل برخورد لیزر با زیرلایه از کانون آن بر روی شکل هندسی، نسبت آمیختگی و سختی نمونه ­ها مورد ارزیابی قرار گرفت. بهترین لایه با کمترین درصد آمیختگی حدود 9 درصد در سرعت حرکت لیزر10 میلیمتر­بر­ثانیه، نرخ تغذیه­ ی پودر10 گرم ­بر­دقیقه و توان لیزر 330 وات به­ دست آمد. به‌دست آوردن پارامترهای مطلوب و توزیع یکنواخت پودر روکش­کننده با بکار بردن این پارامترها، سبب ایجاد سطح روکشی یکنواخت شده است. مطالعه سختی نمونه ­ها، افزایش سختی سطح روکش ­شده به اندازه سه برابر مقدار اولیه، برای نمونه مطلوب را نشان می ­دهد.
متن کامل [PDF 974 kb]   (1088 دریافت)    
نوع مقاله: پژوهشی اصیل | موضوع مقاله: مواد مرکب
دریافت: 1400/4/6 | پذیرش: 1400/7/14 | انتشار: 1401/1/10

فهرست منابع
1. L. Zhu, P. Xue, Q. Lan, G. Meng, Y. Ren, Z. Yang, P. Xu, Z. Liu, Recent research and development status of laser cladding: A review, Optics & Laser Technology, vol. 138, article ID. 106915, 2021, [DOI:10.1016/j.optlastec.2021.106915]
2. Z. Chen, H. Yan, P. Zhang, Z. Yu, G. Guo, Microstructural evolution and wear behavior of laser-clad Stellite 6/NbC/h-BN self-lubricating coating , Surface and Coating Technology, vol. 372, pp. 218-228, 2019. [DOI:10.1016/j.surfcoat.2019.04.083]
3. Z. Zhang, R. Kovacevic, laser cladding of iron-based erosion resistant metal matrix composite, Journal of manufacturing processes, vol. 38, pp. 63-75, 2019. [DOI:10.1016/j.jmapro.2019.01.001]
4. F. Wirth, K. Wegener, A physical modeling and predictive simulation of the laser cladding process. Addit Manuf, vol. 22, pp. 307-319, 2018. [DOI:10.1016/j.addma.2018.05.017]
5. F. Brückner, D. Lepski, E. Beyer, Modeling the Influence of Process Parameters and Additional Heat Sources on Residual Stresses in Laser Cladding. Journal of Thermal Spray Technology, vol.16 (3), pp. 355-373, 2007. [DOI:10.1007/s11666-007-9026-7]
6. Q. Meng, L. Geng, B. Zhang, Laser cladding of Ni-base composite coating onto Ti-6Al-4V substrates with pre-placed B4C+NiCrBSi powders, Surface and Coating Technology , vol. 200, pp.4923-4928, 2006 [DOI:10.1016/j.surfcoat.2005.04.059]
7. U. de Oliveira, V. Ocelik, J. Th. M. De Hosson, Analysis of coaxial laser cladding processing conditions, Surface and Coating Technology, vol. 201, pp.127-136, 2005. [DOI:10.1016/j.surfcoat.2004.06.029]
8. O. Nenadl, V. Ocelik, A. Palavra, J. Th. M. De Hosson, The prediction of coating geometry from main processing parameters laser cladding, Physics Procedia, vol. 56, pp.220-227, 2014. [DOI:10.1016/j.phpro.2014.08.166]
9. M. Ansari, R. Shoja Razavi, M. Barekat, An empirical-statiscal model for coaxial laser cladding of NiCrAlY powder on Inconel 738 superalloy, Optics & Laser Technology , vol. 86, pp.136-144, 2016. [DOI:10.1016/j.optlastec.2016.06.014]
10. R. Vilar, A. Almeida, Laser surface treatment of biomedical alloys, New York Book Chapter: Elsevier, 2016. [DOI:10.1016/B978-0-08-100883-6.00002-2]
11. J. Ju, Y. Zhou, M. Kang, et al, Optimization of process parameters, microstructure, and properties of laser cladding Fe-based alloy on42CrMo steel roller, Materials, vol. 11, pp. 2061-2076, 2018. [DOI:10.3390/ma11102061]
12. L. Reddy, S.P. Preston, P.H. Shipway, C. Davis, T. Hussain, Process parameter optimisation of laser clad iron based alloy: Predictive models of deposition efficiency, porosity and dilution, Surface and Coatings Technology, vol. 349, pp. 198-207, 2018. [DOI:10.1016/j.surfcoat.2018.05.054]
13. J. T. Hofman, D. F. de Lange, B. Pathiraj, et al, FEM modeling and experimental verification for dilution control in laser cladding, Journal of Materials Processing Technology, vol. 211, pp. 187-196, 2011. [DOI:10.1016/j.jmatprotec.2010.09.007]
14. J. Pekkarinen, V. Kujanpa, A.Salminen, Laser cladding with scanning optics: Effect of power adjustment, Journal of Laser Applications, vol. 24, pp. 032003-032010, 2012. [DOI:10.2351/1.4706582]
15. W. E. Frazier, Metal additive manufacturing: A review, Journal of Materials Engineering and Performance, vol. 23, pp. 1917-1928, 2014. [DOI:10.1007/s11665-014-0958-z]
16. E. Foroozmehr, D. Lin, R. Kovacevic, Application of vibration in the laser powder deposition process, Journal of Manufacturing Processes, Vol. 11, pp. 38-44, 2009. [DOI:10.1016/j.jmapro.2009.07.002]
17. H. El Cheikh, B. Courant, S. Branchu, J. Y. Hascoet, R. Guillen, Analysis and prediction of single laser tracks geometrical characteristics in coaxial laser cladding process, Optics & Lasers Engeneering. Vol.50, pp. 413-422, 2012. [DOI:10.1016/j.optlaseng.2011.10.014]
18. Y. Javid, M. Ghoreishi, M. J. Torkamany, Preplaced laser cladding of WC powder on Inconel 718 by Nd:YAG laser, Modares Mechanical Engineering, Vol. 15, No. 7, pp. 98-106, 2015 (In Persian).
19. M. Barekat, R. Shoja Razavi, A. Ghasemi, Nd:YAG laser cladding of Co-Cr-Mo alloy on γ-TiAl substrate, Optics & Laser Technology. vol. 80, pp. 145-152, 2016. [DOI:10.1016/j.optlastec.2016.01.003]
20. M. Ibrahim, A.A.D. Sarhan, T.Y. Kuo, M. Hamdi, Farazila Yusof, Advancement of the artificial amorphous-crystalline structure of laser cladded FeCrMoCB on nickel-free stainless-steel for bone-implants, Materials Chemistry and Physics, vol. 227, pp. 358-367, 2019. [DOI:10.1016/j.matchemphys.2018.12.104]
21. Y. Qiao, J. Huang, D. Huang, J. Chen, W. Liu, Z. Wang, Z. Zhibin, Effect of laser scanning speed on microstructure, microhardness and corrosion behavior of laser cladding Ni45 coating, Journal of Chemistry, vol. 2020, Article ID 1438473, 11 pages, 2020. [DOI:10.1155/2020/1438473]
22. T. Akinlabi, A. Bayode, Surface modification of Ti4Al6V alloy by laser cladding with 17-4PH stainless steel powder, Advances in Material Sciences and Engineering, pp. 465-471, 2020. [DOI:10.1007/978-981-13-8297-0_48]
23. D. Wu, M. Guo, G. Ma, et al, Dilution characteristics of ultrasonic assisted laser clad yttria-stabilized zirconia coating, Surface and Coating Technology, vol. 79, pp. 200-204, 2015. [DOI:10.1016/j.matlet.2014.11.058]
24. W. Xi, B. Song, Y. Zhao, T. Yu, J. Wang, Geometry and dilution rate analysis and prediction of laser cladding, Int J Adv Manuf Technol, vol. 103, pp. 4695-4702, 2019. [DOI:10.1007/s00170-019-03932-7]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.