Volume 22, Issue 6 (June 2022)                   Modares Mechanical Engineering 2022, 22(6): 393-406 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahangar M, Hoseini A. Experimental study of the performance parameters of a plasma thruster using dielectric barrier discharge with the magnetic field. Modares Mechanical Engineering 2022; 22 (6) :393-406
URL: http://mme.modares.ac.ir/article-15-54420-en.html
1- Assistant Professor, Faculty of New Technology & Aerospace Engineering, Shahid Beheshti University, Tehran, Iran , m_ahangar@sbu.ac.ir
2- M.Sc. Student, Faculty of New Technology & Aerospace Engineering, Shahid Beheshti University, Tehran, Iran
Abstract:   (1567 Views)
In this research, the dielectric barrier discharge plasma driven channel flow with the applied magnetic field has been proposed for use as a thruster in propulsion applications and studied experimentally. Measurements of the thrust and consumed power of thruster for different values of the barrier thickness have been performed and the data have been compared with the corresponding ones without magnetic field. It is found that consumed power and thrust of the thruster in the presence of magnetic field are respectively little reduced and increased than that without the magnetic field. The measurements show that the effectiveness increases to a maximum and then drops as the operating voltage monotonically increases over a range from 12 to 26 kV. A power law analysis for revealing the relationships among the effectiveness, thrust, consumed power, and operating voltage has been presented for the thruster with and without the magnetic field. It is seen that the applied magnetic field and thicker dielectric barrier can lead to a higher effectiveness at the point of transition from the glow regime to the filamentary regime. The effects of micro-discharge channels on the effectiveness in the both regimes have been discussed. The observations indicate that in the presence of magnetic field, the additional micro-discharge channels are generated and develop along the magnetic field lines and the diffuse background emission of the discharge is stronger in plasma. The underlying physical mechanisms of mentioned phenomena have been explained and mainly ascribed to the enhanced ionization by applying the magnetic field.
Full-Text [PDF 1308 kb]   (1053 Downloads)    
Article Type: Original Research | Subject: Aerodynamics
Received: 2021/07/28 | Accepted: 2022/01/23 | Published: 2022/05/31

References
1. Johnson MJ, Go DB. Recent advances in electro hydrodynamic pumps operated by ionic winds: a review. Plasma Sources Science and Technology. 2017 Oct 3;26(10):103002. [DOI:10.1088/1361-6595/aa88e7]
2. Zheng JG, Cui YD, Khoo BC. A comparative study of alternating current and nanosecond plasma actuators in flow separation control. International Journal of Heat and Mass Transfer. 2019 Jun 1;135:1097-117. [DOI:10.1016/j.ijheatmasstransfer.2019.02.030]
3. Corke TC, Enloe CL, Wilkinson SP. Dielectric barrier discharge plasma actuators for flow control. Annual review of fluid mechanics. 2010;42:505-29. [DOI:10.1146/annurev-fluid-121108-145550]
4. Wang JJ, Choi KS, Feng LH, Jukes TN, Whalley RD. Recent developments in DBD plasma flow control. Progress in Aerospace Sciences. 2013 Oct 1;62:52-78. [DOI:10.1016/j.paerosci.2013.05.003]
5. Zhang X, Huang Y, Wang X, Wang W, Tang K, Li H. Turbulent boundary layer separation control using plasma actuator at Reynolds number 2000000. Chinese Journal of Aeronautics. 2016 Oct 1;29(5):1237-46. [DOI:10.1016/j.cja.2016.08.006]
6. Pescini E, Marra F, De Giorgi MG, Francioso L, Ficarella A. Investigation of the boundary layer characteristics for assessing the DBD plasma actuator control of the separated flow at low Reynolds numbers. Experimental Thermal and Fluid Science. 2017 Feb 1;81:482-98. [DOI:10.1016/j.expthermflusci.2016.09.005]
7. Batlle EC, Pereira R, Kotsonis M. Airfoil stall hysteresis control with dbd plasma actuation. In55th AIAA Aerospace Sciences Meeting 2017 (p. 1803). [DOI:10.2514/6.2017-1803]
8. Zhao G, Huang Y, Yang Y, Li G, Yang H. Dynamic stall control over a rotor airfoil based on AC DBD plasma actuation. Advances in Aerodynamics. 2021 Dec;3(1):1-3. [DOI:10.1186/s42774-021-00061-2]
9. Pouryoussefi SG, Mirzaei M, Alinejad F, Pouryoussefi SM. Experimental investigation of separation bubble control on an iced airfoil using plasma actuator. Applied Thermal Engineering. 2016 May 5;100:1334-41. [DOI:10.1016/j.applthermaleng.2016.02.133]
10. Cai J, Tian Y, Meng X, Han X, Zhang D, Hu H. An experimental study of icing control using DBD plasma actuator. Experiments in Fluids. 2017 Aug;58(8):1-8. [DOI:10.1007/s00348-017-2378-y]
11. Ozturk C, Jacob J. Plasma micro-thrusters for micro-aerial vehicles. SAE Technical Paper; 2008 Aug 19. [DOI:10.4271/2008-01-2244]
12. Debiasi M, Li JM. Experimental study of a DBD-Plasma driven channel flow. In49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 2011 (p. 954). [DOI:10.2514/6.2011-954]
13. Riherd M, Roy S. Measurements and simulations of a channel flow powered by plasma actuators. Journal of applied physics. 2012 Sep 1;112(5):053303. [DOI:10.1063/1.4749250]
14. Campbell NS, Roy S. Plasma channel flows: Electro-fluid dynamic jets. Applied Physics Letters. 2014 Sep 29;105(13):132906. [DOI:10.1063/1.4897341]
15. Soni J. Characterization of plasma actuator based micro thruster concepts for high altitude aircrafts and CubeSats. University of Florida; 2014.
16. Defoort E, Benard N, Moreau E. Ionic wind produced by an electro-aerodynamic pump based on corona and dielectric barrier discharges. Journal of Electrostatics. 2017 Aug 1;88:35-40. [DOI:10.1016/j.elstat.2017.01.021]
17. Browning P, Shambaugh B, Dygert J. Experimental study of dielectric barrier discharge driven duct flow for propulsion applications in unmanned aerial systems. SAE Technical Paper; 2017 Sep 19. [DOI:10.4271/2017-01-2063]
18. Wojewodka MM, White C, Kontis K. Effect of permittivity and frequency on induced velocity in ac-DBD surface and channel plasma actuators. Sensors and Actuators A: Physical. 2020 Mar 1;303:111831. [DOI:10.1016/j.sna.2020.111831]
19. Goebel DM, Katz I. Fundamentals of electric propulsion: ion and Hall thrusters. John Wiley & Sons; 2008 Dec 22. [DOI:10.1002/9780470436448]
20. Murdiya F, Hamzah A, Andrio D. The Effect of Permanent Magnet on Dielectric Barrier Discharge (DBD) and Ozone Production. In Journal of Physics: Conference Series 2020 Oct 1 (Vol. 1655, No. 1, p. 012002). IOP Publishing. [DOI:10.1088/1742-6596/1655/1/012002]
21. El-Zein A, Talaat M, El-Aragi G, El-Amawy A. The Characteristics of Dielectric Barrier Discharge Plasma under the Effect of Parallel Magnetic Field. IEEE Transactions on Plasma Science. 2020 Mar 11;48(4):1022-9. [DOI:10.1109/TPS.2020.2977640]
22. Guo H, Xu Y, Wang Y, Ren C. Experimental study on the effects of airflow, magnetic field and combination of airflow with magnetic field on nanosecond pulsed dielectric barrier discharge in atmospheric air. Physics of Plasmas. 2020 Feb 26;27(2):023519. [DOI:10.1063/1.5117885]
23. https://www.kjmagnetics.com/calculator.asp
24. Durscher R, Roy S. Evaluation of thrust measurement techniques for dielectric barrier discharge actuators. Experiments in fluids. 2012 Oct;53(4):1165-76. [DOI:10.1007/s00348-012-1349-6]
25. Wu L, Gao C, Yan X, Liu F, Luo S. PIV-Estimated DBD Plasma-Actuator Thrust Verified by Measurement in Quiescent Air. In54th AIAA Aerospace Sciences Meeting 2016 (p. 0198). [DOI:10.2514/6.2016-0198]
26. Hoskinson AR, Hershkowitz N, Ashpis DE. Force measurements of single and double barrier DBD plasma actuators in quiescent air. Journal of Physics D: Applied Physics. 2008 Nov 27;41(24):245209. [DOI:10.1088/0022-3727/41/24/245209]
27. Zito J, Arnold D, Durscher R, Roy S. Investigation of impedance characteristics and power delivery for dielectric barrier discharge plasma actuators. In48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 2010 Jan 4 (p. 964). [DOI:10.2514/6.2010-964]
28. Ashpis DE, Laun MC, Griebeler EL. Progress toward accurate measurement of dielectric barrier discharge plasma actuator power. AIAA Journal. 2017 Jul;55(7):2254-68. [DOI:10.2514/1.J055816]
29. Benard N, Moreau E. Role of the electric waveform supplying a dielectric barrier discharge plasma actuator. Applied Physics Letters. 2012 May 7;100(19):193503. [DOI:10.1063/1.4712125]
30. Kriegseis J, Möller B, Grundmann S, Tropea C. Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators. Journal of Electrostatics. 2011 Aug 1;69(4):302-12. [DOI:10.1016/j.elstat.2011.04.007]
31. Burton RL, Turchi PJ. Pulsed plasma thruster. Journal of Propulsion and Power. 1998 Sep;14(5):716-35. [DOI:10.2514/2.5334]
32. Pottinger SJ, Krejci D, Scharlemann CA. Pulsed plasma thruster performance for miniaturized electrode configurations and low energy operation. Acta Astronautica. 2011 Jun 1;68(11-12):1996-2004. [DOI:10.1016/j.actaastro.2010.11.011]
33. Ahangar M, Ebrahimi R, Shams M. Numerical simulation of non-equilibrium plasma flow in a cylindrical MPD thruster using a high-order flux-difference splitting method. Acta Astronautica. 2014 Oct 1;103:129-41. [DOI:10.1016/j.actaastro.2014.07.008]
34. Ahangar M, Ebrahimi R, Shams M. Numerical investigation of plasma behavior and anode sheath in a magnetoplasmadynamic thruster. Journal of Propulsion and Power. 2016 Mar;32(2):420-30. [DOI:10.2514/1.B35680]
35. Liu Y, Yan H, Guo H, Fan Z, Wang Y, Wu Y, Ren C. Effect of parallel magnetic field on repetitively unipolar nanosecond pulsed dielectric barrier discharge under different pulse repetition frequencies. Physics of Plasmas. 2018 Mar 28; 25(3):033519. [DOI:10.1063/1.5016898]
36. Yoon J S, and Han J H. Semiempirical thrust model of dielectric barrier plasma actuator for flow control. Journal of Aerospace Engineering. 2015; 28(1):04014041. [DOI:10.1061/(ASCE)AS.1943-5525.0000353]
37. Pekárek S. Effect of magnetic field, airflow or combination of airflow with magnetic field on hollow needle-to-cylinder discharge regimes. Journal of Physics D: Applied Physics. 2013 Nov 27; 46(50):505207. [DOI:10.1088/0022-3727/46/50/505207]
38. Liu Y, Qi H, Fan Z, Yan H, Ren C. The impacts of magnetic field on repetitive nanosecond pulsed dielectric barrier discharge in air. Physics of Plasmas. 2016 Nov 23; 23(11):113508. [DOI:10.1063/1.4968233]
39. Liu Y, Yan H, Guo H, Fan Z, Wang Y, Ren C. Experimental investigation on the repetitively nanosecond pulsed dielectric barrier discharge with the parallel magnetic field. Physics of Plasmas. 2018 Feb 14;25(2):023512. [DOI:10.1063/1.5010089]
40. Park JY, Kim GH, Kim JD, Koh HS, Lee DC. NOx removal using DC corona discharge with magnetic field. Combustion science and technology. 1998 Mar 1;133(1-3):65-77. [DOI:10.1080/00102209808952027]
41. Kriegseis J, Duchmann A, Tropea C, Grundmann S. On the classification of dielectric barrier discharge plasma actuators: A comprehensive performance evaluation study. Journal of Applied Physics. 2013 Aug 7;114(5):053301. [DOI:10.1063/1.4817366]
42. Houser N. Manufacturing of Dielectric Barrier Discharge Plasma Actuators for Degradation Resistance (Doctoral dissertation).
43. Geuns R, Goekce S, Plyushchev G, Leyland P, Pimentel R, de Champlain A, Jean Y. Understanding SDBD Actuators: An Experimental Study on Plasma Characteristics. InAIAA Aviation, 45th AIAA Plasmadynamics and Lasers Conference 2014 (No. CONF).
44. Thomas FO, Corke TC, Iqbal M, Kozlov A, Schatzman D. Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control. AIAA journal. 2009 Sep;47(9):2169-78. [DOI:10.2514/1.41588]
45. Kriegseis J. Performance characterization and quantification of dielectric barrier discharge plasma actuators.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.