1. O.H. Mayer, H.A. Schik, B. Vielle, C,Chauveau, I, Gokalp, D.G. Tallay, and R.D. Woodward, ʻAtomization and breakup of cryogenic propellants under high-pressure subcritical and supercritical conditions ʼ, Journal of propulsion and power 14 (1998) 1-8. [
DOI:10.2514/2.5250]
2. B. Chehroudi, D. Talley, and E. Coy, ʻInitial growth rate and visual characteristics if a round jet into a sub- to supercritical environment if relevance to rocket, gas turbuine, and diesel enginesʼ, 37th AIAA Aerospace Sciences Meeting and Exhibit, Reno, American, 11-14 January (1999) 1-8 . [
DOI:10.2514/6.1999-206]
3. B. Chehroudi, R. Cohn, and D. Talley, ʻ Cryogenic shear layers: experiments and phenomenological modeling of the initial growth rate under subcritical and supercritical conditions ʼ, International journal of heat and fluid flow 23 (2002) 554-563. [
DOI:10.1016/S0142-727X(02)00151-0]
4. B. Chehroudi, D. Talley, and E. Coy, ʻVisual characteristics initial growth rate of round Cryogenic jets at subcritical and supercritical pressuresʼ, Physics of fluids 14 (2002) 1-12. [
DOI:10.1063/1.1421103]
5. H. Tani, S. Teramoto, and K. Okamoto, ʻHigh-speed observations of cryogenic single and coaxial jets under subcritical and transcritical conditionsʼ, Exprimental fluids (2015) 1-13. [
DOI:10.1007/s00348-015-1956-0]
6. L. Li, M. Xie, W. Wie, M. Jia, and H. Liu, ʻCharacterization of flashing phenomena with cryogenic fluid under vacuum conditionʼ, Journal of propulsion and power (2016) 1-11.
7. L. Li, M. Xie, W. Wie, M. Jia, and H. Liu, ʻNumerical investigation on cryogenic liquid jet under transcritical and supercritical conditionsʼ, Cryogenics 89 (2018) 16-28. [
DOI:10.1016/j.cryogenics.2017.10.021]
8. K. Lyras, S. Dembele, D.P. Schmidt, and J.X. Wen, ʻNumerical simulation of subcooled and superheated jets under thermodynamic non-equilibriumʼ, International journal of multiphase flow (2018) 1-21. [
DOI:10.1016/j.ijmultiphaseflow.2018.01.014]
9. X. Wu, Z. Huang, S. Zhang, and R. Li, ʻDetached eddy simulation of the flow field and heat transfer in cryogenic nitrogen jet ʼ, International journal of heat and mass transfer 150 (2020) 1-19. [
DOI:10.1016/j.ijheatmasstransfer.2019.119275]
10. J. Ma, H. Liu, L. Liu, and M. Xie, ʻSimulation study on the cryogenic liquid nitrogen jets: Effects of equations of state and turbulence models ʼ, Cryogenics 117 (2021) 1-12. [
DOI:10.1016/j.cryogenics.2021.103330]
11. D. Poulikakos, (1993) ʻDetermination of Structure Temperature and Concentration of the Near Injector Region of Impinging Jets Using Holographic Techniquesʼ, Proc. of the AFOSR Contractors Meeting.
12. E.W. Lemmon, I.H. Bell, Huber, M.L. McLinden, ʻM.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROPʼ, Version 10.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, 2018.
13. N. Dombrowski, and P.C. Hooper, ʻA Study of the Sprays Formed by Impinging Jets in Laminar and Turbulent Flowʼ, Fluid Mech. 18 (1964) 392-398. [
DOI:10.1017/S0022112064000295]
14. Huimin, L. ʻScience and Engineering of Dropletsʼ, Noyes Publication Park Ridge, (1981) New Jersey, U.S.A.