Volume 22, Issue 5 (May 2022)                   Modares Mechanical Engineering 2022, 22(5): 303-310 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghahreman H R, Honarpisheh M, Sarafrazi M B. Experimental and Numerical Study of Rotational Draw Bending Process of SS-304 Thin-walled Pipes Using Polyurethane and NBR Mandrels. Modares Mechanical Engineering 2022; 22 (5) :303-310
URL: http://mme.modares.ac.ir/article-15-55621-en.html
1- MSc, Manufacturing Department, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
2- Associate Professor, Manufacturing Department, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran , honarpishe@kashanu.ac.ir
Abstract:   (2697 Views)
One of the forming pipes methods is the rotary draw bending process. Today, bending of thin-walled pipes with low radius of curvature is widely used in the automotive, military and aerospace industries, which is used to bend high-strength pipes. In this paper, at first the necessary models were created to simulate the bending process of the rotary pipe, and then the necessary mechanical and physical properties for stainless steel 304 and elastomers were determined. Then, experimental and numerical study of the forming force and changes in pipe wall thickness were performed. The process simulation was analytically performed using polyurethane elastomeric mandrels and nitrile rubber based on ABAQUS finite element software on 304 steel. The results show a good agreement between simulation and experimental results. Finally, the effects of process parameters including mandrel type, pipe diameter and bending radius were analyzed on the maximum forming force by factorial analysis. The results showed that the maximum forming force for both types of mandrel materials is obtained for pipes with small diameter and high curvature radius. Also, the bending forces increase 5 times by 30%increasing the bending radius, for pipes with smaller diameters. In addition, in equal diameter and radius of bending, the bending forces in the case of using polyurethane mandrel are 25% more than nitrile mandrel.
Full-Text [PDF 807 kb]   (1169 Downloads)    
Article Type: Original Research | Subject: Forming of metal sheets
Received: 2021/09/14 | Accepted: 2021/11/10 | Published: 2022/04/30

References
1. Trana K. Finite element simulation of the tubehydroforming process-bending, preforming andhydroforming. Journal of Materials ProcessingTechnology. 2002;127(3):401-8. [DOI:10.1016/S0924-0136(02)00432-6]
2. Heng L, He Y, Mei Z, Zhichao S, Ruijie G. Role ofmandrel in NC precision bending process of thinwalled tube. International Journal of Machine Toolsand Manufacture. 2007;47(7-8):1164-75. [DOI:10.1016/j.ijmachtools.2006.09.001]
3. Gu RJ, Yang H, Zhan M, Li H, Li HW. Research on thespringback of thin-walled tube NC bending based onthe numerical simulation of the whole process.Computational Materials Science. 2008;42(4):537-49. [DOI:10.1016/j.commatsci.2007.09.001]
4. Zhao GY, Liu YL, Yang H, Lu CH, Gu RJ. Threedimensional finite-elements modeling and simulationof rotary-draw bending process for thin-walledrectangular tube. Materials Science and Engineering: A.2009;499(1-2):257-61. [DOI:10.1016/j.msea.2007.11.127]
5. He Y, Jing Y, Mei Z, Heng L, Yongle K. 3D numericalstudy on wrinkling characteristics in NC bending ofaluminum alloy thin-walled tubes with large diametersunder multi-die constraints. Computational MaterialsScience. 2009;45(4):1052-67. [DOI:10.1016/j.commatsci.2009.01.010]
6. Li H, Yang H, Yan J, Zhan M. Numerical study ondeformation behaviors of thin-walled tube NC bendingwith large diameter and small bending radius.Computational Materials Science. 2009;45(4):921-34. [DOI:10.1016/j.commatsci.2008.12.018]
7. Tang NC. Plastic-deformation analysis in tubebending. International Journal of Pressure Vessels andPiping. 2000;77(12):751-9. [DOI:10.1016/S0308-0161(00)00061-2]
8. Wang J, Agarwal R. Tube bending under axial forceand internal pressure. Transactions of the ASME. 2006128:598-605. [DOI:10.1115/1.2112987]
9. Fang J, Lu S, Wang K, Yao Z. Three-dimensional finiteelement model of high strength 21-6-9 stainless steeltube in rotary draw bending and its application. 2015,22:141-152.
10. Ghiotti A, Simonetto E, Bruschi S. Insights on tuberotary draw bending with superimposed localizedthermal field. CIRP Journal of Manufacturing Scienceand Technology. 2021;33:30-41. [DOI:10.1016/j.cirpj.2021.02.012]
11. Li HW, Ren GY, Li ZJ, Feng L, Yang H. Formingmechanism and characteristics of a process for equalthickness in-plane ring roll-bending of a metal strip bytwin conical rolls. Journal of Materials ProcessingTechnology. 2016;227:288-307. [DOI:10.1016/j.jmatprotec.2015.09.002]
12. Farahmand HR, Abrinia K. An upper bound analysisfor reshaping thick tubes to polygonal cross-sectiontubes through multistage roll forming process.International Journal of Mechanical Sciences.2015;100:90-8. [DOI:10.1016/j.ijmecsci.2015.06.012]
13. Raujol-Veillé J, Toussaint F, Tabourot L, Vautrot M,Balland P. Experimental and numerical investigation ofa short, thin-walled steel tube incremental formingprocess. Journal of Manufacturing Processes.2015;19:59-66. [DOI:10.1016/j.jmapro.2015.03.008]
14. Li Z, Zheng Z, Yu J, Guo L. Crashworthiness of foamfilled thin-walled circular tubes under dynamicbending. Materials & Design (1980-2015).2013;52:1058-64. [DOI:10.1016/j.matdes.2013.06.067]
15. He Y, Heng L, Zhang Z, Mei ZH, Jing LI, Guangjun L.Advances and trends on tube bending formingtechnologies. Chinese Journal of Aeronautics.2012;25(1):1-2. [DOI:10.1016/S1000-9361(11)60356-7]
16. Zhang ZY, He YA, Heng LI, Ning RE, Tian YL. Bendingbehaviors of large diameter thin-walled CP-Ti tube inrotary draw bending. Progress in Natural Science:Materials International. 2011;21(5):401-12. [DOI:10.1016/S1002-0071(12)60076-8]
17. Simonetto E, Ghiotti A, Bruschi S. In-processmeasurement of springback in tube rotary drawbending. The International Journal of AdvancedManufacturing Technology. 2021;112(9):2485-96. [DOI:10.1007/s00170-020-06453-w]
18. Zhao GY, Liu YL, Dong CS, Yang H, Fan XG. Analysisof wrinkling limit of rotary-draw bending process forthin-walled rectangular tube. Journal of MaterialsProcessing Technology. 2010;210(9):1224-31. [DOI:10.1016/j.jmatprotec.2010.03.009]
19. Zhu YX, Chen W, Tu WB, Guo Y, Chen L. Threedimensional finite element modeling of rotary-drawbending of copper-titanium composite tube. TheInternational Journal of Advanced ManufacturingTechnology. 2020;106(5):2377-89. [DOI:10.1007/s00170-019-04781-0]
20. Safdarian R. Investigation of tube fracture in therotary draw bending process using experimental andnumerical methods. International Journal of MaterialForming. 2020;13(4):493-516. [DOI:10.1007/s12289-019-01484-5]
21. Zhou H, Zhang S, Qiu L, Wang Z. Springback angleprediction of circular metal tube considering theinterference of cross-sectional distortion in mandrelless rotary draw bending. Science Progress.2021;104(1):0036850420984303. [DOI:10.1177/0036850420984303]
22. Seyyedhatami SM, Lexian H. Analysis of the Rotarydraw Bending Process for Thin-walled RectangularAluminum Tube. Iranian Journal of Materials Forming.2020;7(1):70-83.
23. Ma J, Li H, Fu MW. Modelling of springback in tubebending: A generalized analytical approach.International Journal of Mechanical Sciences.2021;204:106516. [DOI:10.1016/j.ijmecsci.2021.106516]
24. Ha T, Ma J, Blindheim J, Welo T, Ringen G, Wang J.In-line springback measurement for tube bendingusing a laser system. Procedia Manufacturing.2020;47:766-73. [DOI:10.1016/j.promfg.2020.04.233]
25. Miller GG. Tube forming processes: acomprehensive guide. Society of ManufacturingEngineers; 2003.
26. http://www.hineshending.com, Hines Bendingsystems, Basic Tube Bending Guide.
27. Stange RR. Tube and pipe bending: principles,methods, tooling, techniques, developments. Tools forbending Inc. 1997.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.