Volume 22, Issue 7 (July 2022)                   Modares Mechanical Engineering 2022, 22(7): 473-483 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

aghayari M, Tabejamaat S. Optimization of Micro Gas Turbine Combustion Chamber by Changing the Swirler Numerically and Experimentally. Modares Mechanical Engineering 2022; 22 (7) :473-483
URL: http://mme.modares.ac.ir/article-15-57240-en.html
1- , aghayari@aut.ac.ir
Abstract:   (941 Views)
In the design of the combustion chamber, various parameters should be considered. These parameters include uniform temperature distribution at the outlet of the chamber, more flame stability, lower pollution, higher combustion efficiency, lower wall temperature, and lower pressure drop in the chamber. Regarding to the complex condition of the flow in the combustion chamber due to the various effects of turbulence and mixing of flows as well as the behavior of turbulent flames, predicting the performance of flow in the combustion chambers is very complicated. In this paper, it is tried to study and optimize the combustion chamber of Amirkabir University of Technology in terms of swirler. It is done by using the numerical method and finally the selected swirler in the numerical method is tested in the experimental setup to investigate optimization method .According to the studies, swirler with an angle of 60 degrees, 12 blades, and a thickness of 0.75 mm is selected as the final case. In the experimental results, the amount of CO pollution has significantly reduced. The output temperature, the pattern factor and unburned hydrocarbon have reduced in the final case. However, the temperature uniformity inside the chamber has increased.
Full-Text [PDF 874 kb]   (455 Downloads)    
Article Type: Original Research | Subject: Computational Fluid Dynamic (CFD)
Received: 2021/11/18 | Accepted: 2022/04/12 | Published: 2022/07/1

References
1. Z. Xi, Z. Fu, X. Hu, S. Sabir, Y. Jiang, "An experimental investigation on flame pulsation for a swirl non premixed combustion", Energies 11 (7) 1757, 2018. [DOI:10.3390/en11071757]
2. S. Pavithra, R. Swathi, Mr. N. Saravanakumar, K. Vinitha, K. Sathishkumar , "Effect of Swirler in a Micro Gas Turbine Engine", International Journal of Engineering Research & Technology (IJERT), ISSN: 2278-0181, Volume 7, Issue 11, 2019.
3. D. Chatterjee, A. Datta, A. Ghosh, and S. Som, "Effects of inlet air swirl and spray cone angle on combustion and emission performance of a liquid fuel spray in a gas turbine combustor," J. Inst. Eng. AS (India), vol. 85, pp. 41-46, 2004.
4. Y. A. Eldrainy, J. Jeffrie, M. Ridzwan, M. Nazri, M. Jaafar, "PREDICTION OF THE FLOW INSIDE A MICRO GAS TURBINE COMBUSTOR", Jurnal Mekanikal, No. 25, 50 - 63, June 2008.
5. H. Heravi and P. Baziar, "The effect of swirl on NO X formation in non-premixed propane air flame," in Proceeding of the European combustion meeting, 2011, pp. 1-5.
6. Yılmaz, "Effect of Swirl Number on Combustion Characteristics in a Natural Gas Diffusion Flame", Journal of Energy Resources Technology, Vol. 135 / 042204-1, December 2013. [DOI:10.1115/1.4024222]
7. Khandelwal, D. Lili, V. Sethi, "Design and study on performance of axial swirler for annular combustor by changing different design parameters", Journal of the Energy Institute, http://dx.doi.org/10.1016/j.joei.2014.03.022, 2014. [DOI:10.1016/j.joei.2014.03.022]
8. R. G. Bhuvana, S. A. Srinivasan, Th. Murugan D., "CFD analysis on swirl angle effect in gas turbine combustion chamber", 2nd International conference on Advances in Mechanical Engineering (ICAME), Materials Science and Engineering 402 012206, 2018. [DOI:10.1088/1757-899X/402/1/012206]
9. P. Zhang, Y. P. Liu, J. H. Li and Y. W. Yan, "Design and Numerical Simulation of a Micro-Gas Turbine Combustor", Journal of Applied Fluid Mechanics, Vol. 12, No. 5, pp. 1707-1718, 2019.
10. A. Hosseini, M. Ghodrat, M. Moghimian, S. H. Pourhosseini, "Numerical Study of inlet air swirl intensity effect of a Methane-Air Diffusion Flame on its combustion characteristics", Case Studies in Thermal Engineering, 18 / 100610, 2020. [DOI:10.1016/j.csite.2020.100610]
11. A. Zavaleta-Luna, M. O. Vigueras-Zúñiga, A. L. Herrera-May, S. A. Zamora-Castro, and M. E. Tejeda-del-Cueto, "Optimized Design of a Swirler for a Combustion Chamber of Non-Premixed Flame Using Genetic Algorithms", Energies, 13, 2240; doi:10.3390/en13092240, 2020. [DOI:10.3390/en13092240]
12. G. Andrews, N. T. Ahmad , "AXIAL SWIRLER DESIGN INFLUENCES ON NOx EMISSIONS FOR PREMIXED COMBUSTION IN GAS TURBINE COMBUSTORS WITH ALL THE COMBUSTOR AIR FLOW PASSING THROUGH THE SWIRLER", Proceedings of ASME Turbo Expo 2011, Vancouver, British Columbia, Canada, June 6-10, 2011. [DOI:10.1115/GT2011-45418]
13. F. E. Agbonzikilo, I. Owen, S. K. Sadasivuni, R. A. Bickerton (2016), "Investigation of Flow Aerodynamics for Optimal Fuel Placement and Mixing in the Radial Swirler Slot of a Dry Low Emission Gas Turbine Combustion Chamber", Journal of Engineering for Gas Turbines and Power, Vol. 138 / 051505-1, MAY 2016. [DOI:10.1115/1.4031529]
14. M.M. Torkzadeh, F. Bolourchifard, E. Amani, "An investigation of air-swirl design criteria for gas turbine combustors through a multi-objective CFD optimization", Fuel 186, p.p. 734-749, 2016. [DOI:10.1016/j.fuel.2016.09.022]
15. R. D. Khadase, S. K. Bhele, "Performance Evaluation of Combustor by Using Different Swirler", International Journal for Research in Applied Science & Engineering Technology (IJRASET), Volume 4 Issue XII, ISSN: 2321-9653 , December 2016.
16. Sh. S. Rashwan (2018), "The Effect of Swirl Number and Oxidizer Composition on Combustion Characteristics of Non-Premixed Methane Flames", Energy & Fuels, American Chemical Society publications, DOI: 10.1021/acs.energyfuels.8b00233. [DOI:10.1021/acs.energyfuels.8b00233]
17. S. Pavithra, R. Swathi, Mr. N. Saravanakumar, K. Vinitha, K. Sathishkumar (2019), "Effect of Swirler in a Micro Gas Turbine Engine", International Journal of Engineering Research & Technology (IJERT), ISSN: 2278-0181, Volume 7, Issue 11, 2019.
18. M.V Heitor, J.H Whitelaw, "Velocity, Temperature, and Species Characteristics of the Flow in a Gas-Turbine Combustor," Combustion and flame, vol. 64, pp. 1-32, 1986. [DOI:10.1016/0010-2180(86)90095-7]
19. Paul,M.C & Jones.W.P. , "Radiative Heat Transfer In A Model Gas Turbine Combustor," Advanced Computational Methods in Heat Transfer IX, pp. 413-421, 2006. [DOI:10.2495/HT060401]
20. A. W. Lefebvre, "Gas Turbine Combustion McGraw-Hill," New York, pp. 492-495, 1983.
21. A. M. Mellor, Design of modern turbine combustors. Academic Press, 1990.
22. Vondál, J., Hájek, J. , "Prediction of Flow through Swirl Generator and Validation by Measured Data.", J. Phys. Conf. Ser. 2011, 318, 022026. [DOI:10.1088/1742-6596/318/2/022026]
23. Liu, Y. L., Tang, H., "Numerical Study on the Interaction Mechanism between Swirl and Reverse Flow Rate in a Twin Swirl Combustor." Adv. Mater. Res. 2014, 960-961, 341-348. [DOI:10.4028/www.scientific.net/AMR.960-961.341]
24. Breussin, F., Pigari, F., Weber, R., "Predicting the near-burner-one flow field and chemistry of swirl-stabilized low-NOx flames of pulverized coal using the RNG-k-ε, RSM and k-ε turbulence models.", Symp. Combust. 1996, 26, 211-217 [DOI:10.1016/S0082-0784(96)80219-0]
25. Darmawan, S., Budiarso, B., Siswantara, A.I., "CFD Investigation of Standard k-ε and RNG k-ε Turbulence Model in Compressor Discharge of Proto X-2 Bioenergy Micro Gas Turbine", In Proceedings of the 8th International Conference in Fluid Thermal and Energy Conversion, Semarang, Indonesia, 9-10 November 2013; pp. 4-8.
26. Mompean, G., "Numerical simulation of a turbulent flow near a right-angled corner using the speziale non-linear model with RNG K-ε equations", Comput. Fluids 1998, 27, 847-859. [DOI:10.1016/S0045-7930(98)00004-8]
27. Yakhot, V., Orszag,S. A., "Renormalization group analysis of turbulence", I.Basictheory. J.Sci. Comput. 1986,1, 3-51. [DOI:10.1007/BF01061452]
28. ANSYSInc., "ANSYS CFX-Solver Modeling Guide v14.0", ANSYS Inc.: Canonsburg, PA, USA,2011; Volume15317.
29. Carbonell, D., Oliva, A., Perez, C.D., "Implementation of two-equation soot flamelet models for laminar diffusion flames." Combust. Flame 2009, 156, 621-632 [DOI:10.1016/j.combustflame.2008.12.003]
30. Peters, N., "Multiscale Combustion and Turbulence.", Proc. Combust. Inst. 2009, 32, 1-25. [DOI:10.1016/j.proci.2008.07.044]
31. Peters, N. (1984), "Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion.", Prog. Energy Combust. Sci. 1984, 10, 319-339. [DOI:10.1016/0360-1285(84)90114-X]
32. ANSYS FLUENT 12.0 User's Guide - 26.2 Choosing the Spatial Discretization Scheme. Available online: https://www.afs.enea.it/project/neptunius/docs/fluent /html/ug/ node778.htm (accessed on 9 April 2020).
33. ANSYSFLUENT12.0User'sGuide-26.2.1First-OrderAccuracyvs. Second-Order Accuracy. Available online: https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node779.htm (accessed on 9 April 2020).

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.