دوره 22، شماره 8 - ( مرداد 1401 )                   جلد 22 شماره 8 صفحات 539-529 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nourizadeh R, Zareinejad M, Rezaei S M, Adibi H. Modeling of Sound Generation Mechanism During the Turning Process. Modares Mechanical Engineering 2022; 22 (8) :529-539
URL: http://mme.modares.ac.ir/article-15-57660-fa.html
نوری زاده نشلی رضا، زارعی نژاد محمد، رضاعی سید مهدی، ادیبی حامد. مدل‌سازی مکانیزم‌های تولید صوت در فرآیند تراشکاری. مهندسی مکانیک مدرس. 1401; 22 (8) :529-539

URL: http://mme.modares.ac.ir/article-15-57660-fa.html


1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر ، smrezaei@aut.ac.ir
چکیده:   (2044 مشاهده)
فرسایش ابزار تاثیر به‌سزایی در فرآیند ماشینکاری دارد. بررسی‌های متعددی برروی پایش فرسایش ابزار از طریق روش‌های متفاوت و با استفاده از سنسورهای مختلف، به منظور پیش‌بینی فرسایش ابزار انجام شده‌است. در این مقاله، مکانیزهای تولید صوت در حین فرآیند تراشکاری به طور جامعی بررسی شده‌اند و سه منبع اصلی تولید صوت تعیین و از یکدیگر متمایز شده‌اند. مکانیزم‌های تولید صوت با منشأ ارتعاشات ابزار، تغییر شکل در قطعه کار و ارتعاشات در سطوح تماس (اصطکاک) بررسی و محدوده‌ی فرکانسی صوت ایجاد‌شده از طریق هر یک از این فرآیندها، مشخص شده‌اند. نشان داده شده است که مکانیزم های ذکر شده به ترتیب در محدوده ی چند ده هرتز، چند کیلوهرتز و چند مگاهرتز تولید صوت می نمایند. پس از آن مکانیزمی که برای پایش ابزار مناسب‌تر باشد بررسی و انتخاب شده‌است. سپس ارتباط بین آن مکانیزم تولید صوت و فرآیند تشکیل براده حین ماشینکاری مورد مطالعه قرار گرفته و درک عمیق‌تری از فرآیند ماشینکاری ایجاد شده است. یافته‌های این مقاله، نه تنها بر مبنای روش‌های پردازش سیگنال، بلکه بر اساس شناخت فیزیک و ذات فرآیند، می‌تواند به یک روش پایش فرآیند ماشینکاری موثر و قابل اتکا منجر شود. جهت صحه‌گذاری روابطِ توسعه داده شده و مدل‌های ایجاد‌شده تست‌های تجربی انجام شده‌است و نتایج تست‌های تجربی کارایی مدل‌های پیشنهادی را نشان می‌دهد.
متن کامل [PDF 998 kb]   (704 دریافت)    
نوع مقاله: پژوهشی اصیل | موضوع مقاله: مکاترونیک
دریافت: 1400/9/14 | پذیرش: 1401/1/29 | انتشار: 1401/5/10

فهرست منابع
1. [1] Kovač, P., et al. (2011). "A review of machining monitoring systems." Journal of production engineering14(1): 1-6.
2. [2] WU, D. (2018). Research on Thermal Monitoring for Finish Machining of Near Net Shape Parts, (Muroran Institute of Technology).
3. [3] Nasir, V., et al. (2019). "Intelligent machining monitoring using sound signal processed with the wavelet method and a self-organizing neural network." IEEE Robotics and Automation Letters4(4): 3449-3456. [DOI:10.1109/LRA.2019.2926666]
4. [4] Plaza, E. G., et al. (2019). "Efficiency of vibration signal feature extraction for surface finish monitoring in CNC machining." Journal of Manufacturing Processes44: 145-157. [DOI:10.1016/j.jmapro.2019.05.046]
5. [5] Ahmad, M., et al. (2015). "Development of tool wear machining monitoring using novel statistical analysis method, I-kaz™." Procedia Engineering101: 355-362. [DOI:10.1016/j.proeng.2015.02.043]
6. [6] Inasaki, I. (1998). "Application of acoustic emission sensor for monitoring machining processes." Ultrasonics36(1-5): 273-281. [DOI:10.1016/S0041-624X(97)00052-8]
7. [7] Oliveira, T. L. L., et al. (2020). "Smart machining: Monitoring of CFRP Milling using AE and IR." Composite Structures249: 112611. [DOI:10.1016/j.compstruct.2020.112611]
8. [8] Bombiński, S., Kossakowska, J., & Jemielniak, K. (2022). Detection of accelerated tool wear in turning. Mechanical Systems and Signal Processing, 162, 108021. [DOI:10.1016/j.ymssp.2021.108021]
9. [8] Ong, P., et al. (2019). "Tool condition monitoring in CNC end milling using wavelet neural network based on machine vision." The International Journal of Advanced Manufacturing Technology104(1): 1369-1379. [DOI:10.1007/s00170-019-04020-6]
10. [10] Lee, W. J., et al. (2019). "Predictive maintenance of machine tool systems using artificial intelligence techniques applied to machine condition data." Procedia Cirp80: 506-511. [DOI:10.1016/j.procir.2018.12.019]
11. [11] Chen, S.-L. and Y. Jen (2000). "Data fusion neural network for tool condition monitoring in CNC milling machining." International journal of machine tools and manufacture40(3): 381-400. [DOI:10.1016/S0890-6955(99)00066-8]
12. [12] Kao, J. and Y. Tarng (1997). "A neural-network approach for the on-line monitoring of the electrical discharge machining process." Journal of Materials Processing Technology69(1-3): 112-119. [DOI:10.1016/S0924-0136(97)00004-6]
13. [13] Serin, G., et al. (2020). "Review of tool condition monitoring in machining and opportunities for deep learning." The International Journal of Advanced Manufacturing Technology: 1-22.
14. [14] Lee, C.-H., et al. (2020). "An intelligent system for grinding wheel condition monitoring based on machining sound and deep learning." IEEE Access8: 58279-58289. [DOI:10.1109/ACCESS.2020.2982800]
15. [15] Ahmed, Y. S., et al. (2020). "Application of the wavelet transform to acoustic emission signals for built-up edge monitoring in stainless steel machining." Measurement154: 107478. [DOI:10.1016/j.measurement.2020.107478]
16. [16] Mohanraj, T., et al. (2020). "Development of tool condition monitoring system in end milling process using wavelet features and Hoelder's exponent with machine learning algorithms." Measurement: 108671. [DOI:10.1016/j.measurement.2020.108671]
17. [17] Maged, A., et al. (2018). "Statistical monitoring and optimization of electrochemical machining using Shewhart Charts and response surface methodology." International Journal of Engineering Materials and Manufacture3(2): 68-77. [DOI:10.26776/ijemm.03.02.2018.01]
18. [18] Alonso, F. J., & Salgado, D. R. (2008). Analysis of the structure of vibration signals for tool wear detection. Mechanical systems and signal processing, 22(3), 735-748. [DOI:10.1016/j.ymssp.2007.09.012]
19. [19] Komanduri, R. and B. Von Turkovich (1981). "New observations on the mechanism of chip formation when machining titanium alloys." Wear69(2): 179-188. [DOI:10.1016/0043-1648(81)90242-8]
20. [20] Shaw, M. and A. Vyas (1998). "The mechanism of chip formation with hard turning steel." CIRP Annals47(1): 77-82. [DOI:10.1016/S0007-8506(07)62789-9]
21. [21] Che, J., et al. (2020). "Experimental and numerical studies on chip formation mechanism and working performance of the milling tool with single abrasive grain." Journal of Petroleum Science and Engineering195: 107645. [DOI:10.1016/j.petrol.2020.107645]
22. [22] Liu, Q., et al. (2021). "Mechanism of chip formation and surface-defects in orthogonal cutting of soft-brittle potassium dihydrogen phosphate crystals." Materials & Design198: 109327. [DOI:10.1016/j.matdes.2020.109327]
23. [23] Siddhpura, A. and R. Paurobally (2012). "A study of the effects of friction on flank wear and the role of friction in tool wear monitoring." Australian Journal of Mechanical Engineering10(2): 141-156. [DOI:10.7158/M12-027.2012.10.2]
24. [24] Guo, Y., et al. (2015). "In situ analysis of flow dynamics and deformation fields in cutting and sliding of metals." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences471(2178): 20150194. [DOI:10.1098/rspa.2015.0194]
25. [25] Kuntoğlu, M., & Sağlam, H. (2019). Investigation of progressive tool wear for determining of optimized machining parameters in turning. Measurement, 140, 427-436. [DOI:10.1016/j.measurement.2019.04.022]
26. [26] Priarone, P. C., Robiglio, M., Settineri, L., & Tebaldo, V. (2014). Milling and turning of titanium aluminides by using minimum quantity lubrication. Procedia Cirp, 24, 62-67. [DOI:10.1016/j.procir.2014.07.147]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.