1. [1]Brauer JR. Magnetic actuators and sensors: John Wiley & Sons; 2006. [
DOI:10.1002/0471777714]
2. [2]Shan G, Li Y, Zhang L, Wang Z, Zhang Y, Qian J. Contributed Review: Application of voice coil motors in high-precision positioning stages with large travel ranges. Review of Scientific Instruments. 2015;86(10):101501. [
DOI:10.1063/1.4932580]
3. [3]Kim K-H, Choi Y-M, Gweon D-G, Hong D-P, Kim K-S, Lee S-W, et al., editors. Design of decoupled dual servo stage with voice coil motor and linear motor for XY long stroke ultra-precision scanning system. ICMIT 2005: Mechatronics, MEMS, and Smart Materials; 2006: International Society for Optics and Photonics. [
DOI:10.1117/12.664218]
4. [4]Banik R, Gweon D-G. Design and optimization of voice coil motor for application in active vibration isolation. Sensors and Actuators A: Physical. 2007;137(2):236-43. [
DOI:10.1016/j.sna.2007.03.011]
5. [5]Kim K-H, Choi Y-M, Gweon D-G, Hong D-P, Kim K-S, Lee S-W, et al. Design of decoupled dual servo stage with voice coil motor and linear motor for XY long stroke ultra-precision scanning system: SPIE; 2006. [
DOI:10.1117/12.664218]
6. [6]Janssen JLG, Paulides JJH, Encica L, Lomonova E, editors. High-performance moving-coil actuators with double-sided PM arrays: A design comparison. 2010 International Conference on Electrical Machines and Systems; 2010 10-13 Oct. 2010.
7. [7]Wang X, Yang BT, Zhu Y. Modeling and analysis of a novel rectangular voice coil motor for the 6-DOF fine stage of lithographic equipment. Optik. 2016;127(4):2246-50. [
DOI:10.1016/j.ijleo.2015.11.107]
8. [8]Hsieh C-L, Liu C-S, Cheng C-C. Design of a 5 degree of freedom-voice coil motor actuator for smartphone camera modules. Sensors and Actuators A: Physical. 2020;309:112014. [
DOI:10.1016/j.sna.2020.112014]
9. [9]Kim J-Y, Ahn D. Analysis of High Force Voice Coil Motors for Magnetic Levitation. Actuators. 2020;9(4):133. [
DOI:10.3390/act9040133]
10. [10]Sabzehmeidani Y, Mailah M, Hing TH, Abdelmaksoud SI. A Novel Voice-Coil Actuated Mini Crawler for In-Pipe Application Employing Active Force Control With Iterative Learning Algorithm. IEEE Access. 2021;9:28156-66. [
DOI:10.1109/ACCESS.2021.3058312]
11. [11]Bijster R. Design, verification and validation of a micropropulsion thrust stand. 2014.
12. [12]Kokal U. DEVELOPMENT OF A MILI-NEWTON LEVEL THRUST STAND FOR THRUST MEASUREMENTS OF ELECTRIC PROPULSION SYSTEMS AND UK90 HALL EFFECT THRUSTER: Bogaziçi University; 2019.
13. [13]Kolbeck J, Porter TE, Keidar M, editors. High precision thrust balance development at the george washington. Proceedings of the 35th International Electric Propulsion Conference, Georgia, USA; 2017.
14. [14]Furlani EP. Permanent magnet and electromechanical devices: materials, analysis, and applications: Academic press; 2001. [
DOI:10.1016/B978-012269951-1/50005-X]
15. [15]Compter J, Lomonova E, Makarovic J. Direct 3-D method for performance prediction of a linear moving coil actuator with various topologies. IEE Proceedings-Science, Measurement and Technology. 2003;150(4):183-91. [
DOI:10.1049/ip-smt:20030586]
16. [16]Jansen J, Janssen J, Rovers J, Paulides J, Lomonova E. (Semi-) analytical models for the design of high-precision permanent magnet actuators. International Compumag Society Newsletter. 2009;16(2):4-17.
17. [17]Gieras JF. Permanent magnet motor technology: design and applications: CRC press; 2009. [
DOI:10.1201/9781420064414]
18. [18]Akoun G, Yonnet JP. 3D analytical calculation of the forces exerted between two cuboidal magnets. IEEE Transactions on Magnetics. 1984;20(5):1962-4. [
DOI:10.1109/TMAG.1984.1063554]
19. [19]Jansen JW, Lierop CMMv, Lomonova EA, Vandenput AJA. Modeling of Magnetically Levitated Planar Actuators With Moving Magnets. IEEE Transactions on Magnetics. 2007;43(1):15-25. [
DOI:10.1109/TMAG.2006.886051]
20. [20]Tang H, Shi C, Zhang Xa, Zhang Z, Cheng J. Pulsed thrust measurements using electromagnetic calibration techniques. Review of Scientific Instruments. 2011;82(3):035118. [
DOI:10.1063/1.3567803]
21. [21]Selden NP, Ketsdever AD. Comparison of force balance calibration techniques for the nano-Newton range. Review of Scientific Instruments. 2003;74(12):5249-54 [
DOI:10.1063/1.1623628]