1. Kim, G.-Y., J. Ni, and M. Koc, Modeling of the size effects on the behavior of metals in microscale deformation processes. 2007.
2. Lai, X., et al., Material behavior modelling in micro/meso-scale forming process with considering size/scale effects. Computational Materials Science, 2008. 43(4): p. 1003-1009. [
DOI:10.1016/j.commatsci.2008.02.017]
3. Vollertsen, F., H.S. Niehoff, and Z. Hu, State of the art in micro forming. International Journal of Machine Tools and Manufacture, 2006. 46(11): p. 1172-1179. [
DOI:10.1016/j.ijmachtools.2006.01.033]
4. Jiang, Z., J. Zhao, and H. Xie, Microforming technology: theory, simulation and practice. 2017: Academic Press.
5. Hall, E., The deformation and ageing of mild steel: III discussion of results. Proceedings of the Physical Society. Section B, 1951. 64(9): p. 747. [
DOI:10.1088/0370-1301/64/9/303]
6. Petch, N., The cleavage strength of polycrystals. Journal of the Iron and Steel Institute, 1953. 174: p. 25-28.
7. Peng, L., et al., Analysis of micro/mesoscale sheet forming process with uniform size dependent material constitutive model. Materials science and engineering: A, 2009. 526(1-2): p. 93-99. [
DOI:10.1016/j.msea.2009.06.061]
8. Fu, M.W. and W.L. Chan, Micro-scaled products development via microforming. Vol. 10. 2014: Springer. [
DOI:10.1007/978-1-4471-6326-8]
9. Yun, W., et al., A constitutive model for thin sheet metal in micro-forming considering first order size effects. Materials & Design, 2010. 31(2): p. 1010-1014. [
DOI:10.1016/j.matdes.2009.07.037]
10. Hug, E. and C. Keller, Intrinsic effects due to the reduction of thickness on the mechanical behavior of nickel polycrystals. Metallurgical and Materials Transactions A, 2010. 41(10): p. 2498-2506. [
DOI:10.1007/s11661-010-0286-3]
11. Kals, R., H. Pucher, and F. Vollertsen. Effects of specimen size and geometry in metal forming. in Proc. of the 2nd Int. Conf. on Advances in Materials and Processing Technologies. 1995.
12. Chan, W.L., M. Fu, and B. Yang, Experimental studies of the size effect affected microscale plastic deformation in micro upsetting process. Materials Science and Engineering: A, 2012. 534: p. 374-383. [
DOI:10.1016/j.msea.2011.11.083]
13. Peng, L., et al., Size effects in thin sheet metal forming and its elastic-plastic constitutive model. Materials & design, 2007. 28(5): p. 1731-1736. [
DOI:10.1016/j.matdes.2006.02.011]
14. Chan, W.L., M. Fu, and J. Lu, The size effect on micro deformation behaviour in micro-scale plastic deformation. Materials & Design, 2011. 32(1): p. 198-206. [
DOI:10.1016/j.matdes.2010.06.011]
15. Fang, Z., et al., Grain size effect of thickness/average grain size on mechanical behaviour, fracture mechanism and constitutive model for phosphor bronze foil. The International Journal of Advanced Manufacturing Technology, 2015. 79(9): p. 1905-1914. [
DOI:10.1007/s00170-015-6928-2]
16. Ran, J. and M. Fu, A hybrid model for analysis of ductile fracture in micro-scaled plastic deformation of multiphase alloys. International Journal of Plasticity, 2014. 61: p. 1-16. [
DOI:10.1016/j.ijplas.2013.11.006]
17. Li, W., M. Fu, and S.-Q. Shi, Study of deformation and ductile fracture behaviors in micro-scale deformation using a combined surface layer and grain boundary strengthening model. International Journal of Mechanical Sciences, 2017. 131: p. 924-937. [
DOI:10.1016/j.ijmecsci.2017.07.046]
18. Wang, C., et al., Constitutive model based on dislocation density and ductile fracture of Monel 400 thin sheet under tension. Metals and Materials International, 2017. 23(2): p. 264-271. [
DOI:10.1007/s12540-017-6404-7]
19. Xu, Z., et al., An investigation on the formability of sheet metals in the micro/meso scale hydroforming process. International Journal of Mechanical Sciences, 2019. 150: p. 265-276. [
DOI:10.1016/j.ijmecsci.2018.10.033]
20. Wang, C., et al., New Constitutive Model for the Size Effect on Flow Stress Based on the Energy Conservation Law. Materials, 2020. 13(11): p. 2617. [
DOI:10.3390/ma13112617]
21. Wang, S., et al., Size effects on the tensile properties and deformation mechanism of commercial pure titanium foils. Materials Science and Engineering: A, 2018. 730: p. 244-261. [
DOI:10.1016/j.msea.2018.06.009]
22. Meng, B., et al., Effect of plastic anisotropy on microscale ductile fracture and microformability of stainless steel foil. International Journal of Mechanical Sciences, 2018. 148: p. 620-635. [
DOI:10.1016/j.ijmecsci.2018.09.027]
23. Liu, B., et al., Grain size effect on fracture behavior of the axis-tensile test of Inconel 718 sheet. High Temperature Materials and Processes, 2016. 35(10): p. 989-998. [
DOI:10.1515/htmp-2015-0102]