دوره 22، شماره 12 - ( آذر 1401 )                   جلد 22 شماره 12 صفحات 726-715 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asadi A, Jafarkazemi F, Jalaleddin Abyaneh M. Evaluation of the Performance of a Combined Heat Pump System with a Photovoltaic Collector Integrated with a Roof for a Zero-Energy Building in Tehran. Modares Mechanical Engineering 2022; 22 (12) :715-726
URL: http://mme.modares.ac.ir/article-15-60986-fa.html
اسدی علیرضا، جعفرکاظمی فرزاد، جلال الدین ابیانه محمدحسن. بررسی عملکرد سیستم پمپ حرارتی ترکیبی با کلکتور فتوولتائیک یکپارچه با سقف برای ساختمانی با انرژی صفر در تهران. مهندسی مکانیک مدرس. 1401; 22 (12) :715-726

URL: http://mme.modares.ac.ir/article-15-60986-fa.html


1- دانشجوی دکتری مکانیک دانشگاه آزاد اسلامی واحد تهران جنوب، دانشکده مکانیک ، st_ar_asadi@azad.ac.ir
2- مرکز تحقیقات مدل‌سازی و بهینه‌سازی در علوم و مهندسی، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
3- مرکز تحقیقات مدل‌سازی و بهینه ‌سازی در علوم و مهندسی، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
چکیده:   (1427 مشاهده)
مفهوم ساختمان‌ انرژی صفر [1] برای کاهش مصرف انرژی و انتشار کربن در سطح جهانی  و در بخش ساختمان معرفی شده است. برای اجرای ساختمان‌های‌ انرژی صفر از سیستم‌های انرژی تجدیدپذیر مانند کلکتور حرارتی خورشیدی، کلکتور فتوولتائیک [2] و سیستم‌های پمپ حرارتی منبع هوا [3] استفاده می‌شود. این مطالعه یک سیستم ترکیبی پمپ حرارتی منبع هوا با کلکتور فتوولتائیک حرارتی یکپارچه با ساختمان را برای تحقق ساختمان‌ انرژی صفر در مقیاس کوچک پیشنهاد می‌کند. در این مقاله به منظور ارزیابی کارکرد سیستم، یک مدل سیستم ترکیبی پمپ حرارتی منبع هوا با کلکتور فتوولتائیک حرارتی یکپارچه با سقف ساختمان طراحی شده و مدل بار ساختمان نیز بر اساس شرایط واقعی ساختمان تعریف شد. سپس عملکرد گرمایشی و سرمایشی سیستم ترکیبی پمپ حرارتی منبع هوا با کلکتور فتوولتائیک حرارتی یکپارچه با سقف ساختمان به مدت یک سال با استفاده از نرم افزار TRNSYS [4] شبیه‌سازی دینامیکی شد و سیستم برای کاربردهای مختلف از دیدگاه‌های انرژی، اقتصادی و زیست‌محیطی به صورت عددی مورد ارزیابی قرار گرفت. نتایج نشان داد برای این سیستم مصرف انرژی تجدیدناپذیر اولیه 19/9 کیلووات ساعت بر مترمربع در سال می‌باشد. با توجه به اینکه این مقدار کمتر از مقدار آستانه انرژی گرمایشی برای ساختمان انرژی صفر بود، لذا سیستم پیشنهادی شرایط ساختمان‌ انرژی صفر را به خوبی برآورده کرد. بعلاوه نشان داده شد که برای یک منطقه مشخص، با اینکه فناوری فتوولتائیک حرارتی منجر به کاهش مصرف انرژی اولیه تجدیدناپذیر می‌شود ولی انرژی خورشیدی تولیدی توسط آن از انرژی تولیدی توسط کلکتورهای فتوولتائیک کمتر است.
 
متن کامل [PDF 989 kb]   (874 دریافت)    
نوع مقاله: پژوهشی اصیل | موضوع مقاله: ترمودینامیک
دریافت: 1401/1/29 | پذیرش: 1401/5/4 | انتشار: 1401/9/10

فهرست منابع
1. Alessandro M, Niccolao A, Claudio DP, Fabrizio L. Photovoltaic-thermal solar-assisted heat pump systems for building applications: integration and design methods. Energy and Built Environment. 2021.
2. Aberoumand S, Ghamari S, Shabani B. Energy and exergy analysis of a photovoltaic thermal (PV/T) system using nanofluids: An experimental study. Solar Energy. 2018;165:167-77. [DOI:10.1016/j.solener.2018.03.028]
3. Bae S, Chae S, Nam Y. Performance Analysis of Integrated Photovoltaic-Thermal and Air Source Heat Pump System through Energy Simulation. Energies. 2022;15(2):528. [DOI:10.3390/en15020528]
4. Klein SA, Beckman WA. TRNSYS 18: A transient system simulation program: Standard Component Library Overview. TRNSYS. 2017;3:389-96.
5. Thomas Boermans AH, Sven Schimschar, Jan Grözinger, Markus Offermann. Principles for Nearly Zero-Energy Buildings. Ecofys Germany GmbH; 2020.
6. ENERGY I, AGENCY. World Energy Outlook 2021. IEA, Paris; 2021.
7. Pérez-Lombard L, Ortiz J, Pout C. A review on buildings energy consumption information. Energy and Buildings. 2008;40(3):394-8. [DOI:10.1016/j.enbuild.2007.03.007]
8. Roaf S, Brotas L, Nicol F. Counting the costs of comfort. Building Research & Information. 2015;43(3):269-73. [DOI:10.1080/09613218.2014.998948]
9. IEA. Net Zero by 2050. Paris IEA; 2021.
10. IEA. Heat Pumps. Paris 2021.
11. Rimbala J, Kyncl J. The possibilities of reducing energy consumption for the preparation of hot water by suitable switching of the heat pump2020. 1-4 p. [DOI:10.1109/EPE51172.2020.9269251]
12. Smitt S, Tolstorebrov I, Gullo P, Pardiñas Á, Hafner A. Energy use and retrofitting potential of heat pumps in cold climate hotels. Journal of Cleaner Production. 2021;298:126799. [DOI:10.1016/j.jclepro.2021.126799]
13. Kosoi A, Antipov Y, Shkarin K, Shatalov I, Sokolov D. A multistage heat pump unit model for reducing energy consumption of space heating at low ambient temperatures. IOP Conference Series: Materials Science and Engineering. 2021;1100:012045. [DOI:10.1088/1757-899X/1100/1/012045]
14. Zuev O, Garanov S, Ivanova E, Karpukhin A. Investigation of the Efficiency of Autocascade and Cascade Heat Pumps in Cold Climate. Chemical and Petroleum Engineering. 2020;56:448-55. [DOI:10.1007/s10556-020-00793-w]
15. Duffie JA, Beckman WA. Solar Engineering of Thermal Processes: Wiley; 2013. [DOI:10.1002/9781118671603]
16. Ghorbani B, Mehrpooya M, Sadeghzadeh M. Developing a tri-generation system of power, heating, and freshwater (for an industrial town) by using solar flat plate collectors, multi-stage desalination unit, and Kalina power generation cycle. Energy Conversion and Management. 2018;165:113-26. [DOI:10.1016/j.enconman.2018.03.040]
17. Vallati A, Ocłoń P, Colucci C, Mauri L, de Lieto Vollaro R, Taler J. Energy analysis of a thermal system composed by a heat pump coupled with a PVT solar collector. Energy. 2019;174:91-6. [DOI:10.1016/j.energy.2019.02.152]
18. Aguilar-Jiménez JA, Hernández-Callejo L, Alonso-Gómez V, Velázquez N, López-Zavala R, Acuña A, et al. Techno-economic analysis of hybrid PV/T systems under different climate scenarios and energy tariffs. Solar Energy. 2020;212:191-202. [DOI:10.1016/j.solener.2020.10.079]
19. Li M, Zhong D, Ma T, Kazemian A, Gu W. Photovoltaic thermal module and solar thermal collector connected in series: Energy and exergy analysis. Energy Conversion and Management. 2020;206:112479. [DOI:10.1016/j.enconman.2020.112479]
20. Song Z, Ji J, Cai J, Li Z, Yu B. The performance comparison of the direct-expansion solar assisted heat pumps with three different PV evaporators. Energy Conversion and Management. 2020;213:112781. [DOI:10.1016/j.enconman.2020.112781]
21. Srivastava T. Energy and exergy analysis of 36 W solar photovoltaic module. International Journal of Ambient Energy. 2013.
22. Yazdanifard F, Ameri M. Exergetic advancement of photovoltaic/thermal systems (PV/T): A review. Renewable and Sustainable Energy Reviews. 2018;97:529-53. [DOI:10.1016/j.rser.2018.08.053]
23. Nemati Jahromi S, Vadiee A, Yaghoubi M. Exergy and Economic Evaluation of a Commercially Available PV/T Collector for Different Climates in Iran. Energy Procedia. 2015;75:444-56. [DOI:10.1016/j.egypro.2015.07.416]
24. Al-Waeli AHA, Kazem, H. A., Chaichan, M. T., & Sopian, K. Photovoltaic/Thermal (PV/T) Systems: Springer International Publishing; 2019. [DOI:10.1007/978-3-030-27824-3]
25. Bellos E, Tzivanidis C, Moschos K, Antonopoulos KA. Energetic and financial evaluation of solar assisted heat pump space heating systems. Energy Conversion and Management. 2016;120:306-19. [DOI:10.1016/j.enconman.2016.05.004]
26. Suleman F, Dincer I, Agelin-Chaab M. Energy and exergy analyses of an integrated solar heat pump system. Applied Thermal Engineering. 2014;73(1):559-66. [DOI:10.1016/j.applthermaleng.2014.08.006]
27. Zhang X, Zhao X, Shen J, Hu X, Liu X, Xu J. Design, fabrication and experimental study of a solar photovoltaic/loop-heat-pipe based heat pump system. Solar Energy. 2013;97:551-68. [DOI:10.1016/j.solener.2013.09.022]
28. Ted James AG, Michael Woodhouse, Robert Margolis and Sean Ong. Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices. U.S: Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.; 2011. [DOI:10.2172/1029857]
29. Fadejev J, Simson R, Kurnitski J, Kesti J, Mononen T, Lautso P. Geothermal Heat Pump Plant Performance in a Nearly Zero-energy Building. Energy Procedia. 2016;96:489-502. [DOI:10.1016/j.egypro.2016.09.087]
30. Kalamees T. IDA ICE: the simulation tool for making the whole building energy- and HAM analysis. 2004.
31. Safarzarzadeh H, Fathollahi S. Simulation Study on the Thermal Performance of a direct-expansion solar-assisted heat pump for water heating in Kermanshah climate. mdrsjrns. 2016;15(12):232-42.
32. Mortezapour H, Ghobadian B, Khoshtaghaza MH, Minaei S. Drying Kinetics and Quality Characteristics of Saffron Dried with a Heat Pump Assisted Hybrid Photovoltaic-thermal Solar Dryer. mdrsjrns. 2014;16(1):33-45.
33. Tabatabaekoloor R, Jafarian H, Moosavi Seyedi SR. Experimental Investigation on Dill Drying in a Solar-Assisted Heat Pump Dryer. mdrsjrns. 2017;19(4):835-45.
34. Bagheri Fahraji E, Maerefat M. Dynamic Modeling of Air to Air Variable Refrigerant Flow Heat Pump System. mdrsjrns. 2018;17(11):397-407.
35. Debbarma M, Sudhakar K, Baredar P. Comparison of BIPV and BIPVT: A review. Resource-Efficient Technologies. 2017;3(3):263-71. [DOI:10.1016/j.reffit.2016.11.013]
36. Conti P, Schito E, Testi D. Cost-Benefit Analysis of Hybrid Photovoltaic/Thermal Collectors in a Nearly Zero-Energy Building. Energies. 2019;12:1582. [DOI:10.3390/en12081582]
37. Hekmatipour F, Jl M, Marofi A. Economic Feasibility and Technical Possibility of Net- Zero Energy Building in Tehran. Indian Journal of Science and Technology. 2019;12:43710. [DOI:10.17485/ijst/2019/v12i25/143710]
38. Yu G, Yang H, Yan Z, Kyeredey Ansah M. A review of designs and performance of façade-based building integrated photovoltaic-thermal (BIPVT) systems. Applied Thermal Engineering. 2021;182:116081. [DOI:10.1016/j.applthermaleng.2020.116081]
39. Arabkoohsar A, Xie G, Wei J, Asok A, Behzadi A, Mahian O. Perspectives and review of photovoltaic-thermal panels in net-zero energy buildings. Journal of Thermal Analysis and Calorimetry. 2022. [DOI:10.1007/s10973-021-11191-6]
40. Crippa M, Guizzardi, D., Muntean, M., Schaaf, E., Solazzo, E., Monforti-Ferrario, F., Olivier, J. and Vignati, E. Fossil CO2 emissions of all world countries - 2020 Report. 2020.
41. Klein SA, Beckman WA. TRNSYS 18: A transient system simulation program: mathematical reference. TRNSYS. 2017;4:389-96.
42. Meteonorm [Internet]. 2021. Available from: meteonorm.com.
43. TESS T. TESS COMPONENT LIBRARIES.
44. Singh A, Khatri K. Energy and exergy analysis of a solar tri-generation system using TRNSYS2016.
45. Wang X, Xia L, Bales C, Zhang X, Copertaro B, Pan S, et al. A systematic review of recent air source heat pump (ASHP) systems assisted by solar thermal, photovoltaic and photovoltaic/thermal sources. Renewable Energy. 2020;146:2472-87. [DOI:10.1016/j.renene.2019.08.096]
46. Sopian K, Alwaeli AHA, Kazem HA. Advanced photovoltaic thermal collectors. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2019;234(2):206-13. [DOI:10.1177/0954408919869541]
47. Öztürk M, Çalişir O, Genç G. Energy, exergy and economic (3E) evaluation of the photovoltaic/thermal collector-assisted heat pump domestic water heating system for different climatic regions in Turkey. Journal of Thermal Analysis and Calorimetry. 2021. [DOI:10.1007/s10973-021-10675-9]
48. Energy IsMo. Electricity tariff 2021: Ministry of Energy; 2022 [Available from: https://tariff.moe.gov.ir/.
49. Oil Mo. MOP-HSED-GL-307 2021 [Guide to calculating and reporting greenhouse gas emissions]. Available from: https://hse.nipc.ir/uploads/mop-307.pdf.
50. Bhattarai S, Oh J-H, Euh S-H, Krishna Kafle G, Hyun Kim D. Simulation and model validation of sheet and tube type photovoltaic thermal solar system and conventional solar collecting system in transient states. Solar Energy Materials and Solar Cells. 2012;103:184-93. [DOI:10.1016/j.solmat.2012.04.017]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.