1. [1] J.S. Puttock, M.R. Yardley, T.M. Cresswell, Prediction of vapour cloud explosions using the SCOPE model. Journal of Loss prevention in the Process Industries, Vol. 13, No. 3-5, pp. 419-31, 2000. [
DOI:10.1016/S0950-4230(99)00045-5]
2. [2] R.S. Cant, W.N. Dawes, A.M. Savill, Advanced CFD and modeling of accidental explosions. Annual Review of Fluid Mechanics, Vol. 21, No. 36, pp. 97-119, 2004. [
DOI:10.1146/annurev.fluid.36.050802.121948]
3. [3] O. Mahian, L. Kolsi, M, Amani, P. Estellé, G. Ahmadi, C. Kleinstreuer, J.S. Marshall, M. Siavashi, R.A. Taylor, H. Niazmand, S. Wongwises, Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory. Physics reports, pp. 1-48. 2019. [
DOI:10.1016/j.physrep.2018.11.004]
4. [4] N.N. Kleinschmit, A shock tube technique for blast wave simulation and studies of flow structure interactions in shock tube blast experiments. Engineering Mechanics Dissertations & Theses. 2011.
5. [5] S. Sklavounos, F. Rigas, Validation of turbulence models in heavy gas dispersion over obstacles. Journal of hazardous materials,Vol. 108, No. 2, pp. 9-20, 2004. [
DOI:10.1016/j.jhazmat.2004.01.005]
6. [6] F. Rigas, S. Sklavounos, Experimentally validated 3-D simulation of shock waves generated by dense explosives in confined complex geometries. Journal of hazardous materials, Vol. 21, No. 3, pp. 23-30, 2005. [
DOI:10.1016/j.jhazmat.2005.01.031]
7. [7] S. Sklavounos, F. Rigas, Computer simulation of shock waves transmission in obstructed terrains. Journal of Loss Prevention in the Process Industries, Vol. 17, No. 6, pp. 407-17, 2004. [
DOI:10.1016/j.jlp.2004.07.005]
8. [8] I.G. Cullis, N. Nikiforakis, P. Frankl, P. Blakely, P. Bennett, Greenwood, Simulating geometrically complex blast scenarios, Defence technology, Vol. 12, No. 2, pp. 134-46, 2016. [
DOI:10.1016/j.dt.2016.01.005]
9. [9] T.H. Karimi, M. Nikkhah, Numerical Modeling of Damage Caused by Internal Explosion on the Tunnel Concrete Lining. Journal of energetic materials, Vol, 15, No. 45, pp. 39-45, 2020.
10. [10] X. Zhang, Y. Ding, Y. Shi, Numerical simulation of far-field blast loads arising from large TNT equivalent explosives. Journal of Loss Prevention in the Process Industries, Vol 70, p. 104432, 2021. [
DOI:10.1016/j.jlp.2021.104432]
11. [11] Z. Noorpoor, S. Tavangar, H. Soury, S.G. Hosseini, A Computational Fluid Dynamics approach for air blast propagation using OpenFOAM and Becker-Kistiakowsky-Wilson equation of state. Heliyon. , Vol, 6, No. 12, p. e05852, 2020. [
DOI:10.1016/j.heliyon.2020.e05852]
12. [12] S. Kuang, Z. Li, A. Yu, Review on modeling and simulation of blast furnace. Steel research international, Vol, 89, No. 1, p.1700071, 2018. [
DOI:10.1002/srin.201700071]
13. [13] Y. Sugiyama, T. Homae, Wakabayashi K, Matsumura T, Nakayama Y. Numerical simulations on the attenuation effect of a barrier material on a blast wave. Journal of Loss Prevention in the Process Industries, Vol, 1, No. 32, pp.135-43, 2014. [
DOI:10.1016/j.jlp.2014.08.007]
14. [14] J. Heylmun, P. Vonk, T. Brewer, blastFoam 6.0 User Guide. Synthetik Applied Technologies, LLC, 2022.
15. [15] T. Brewer, J. Heylmun, P. Vonk, Employment of the Open-source Airblast Solver blastFoam to Support the Super Heavy Improvised Explosive Loading Demonstration (SHIELD) Test Program. presented at the ISIEMS, USA, 2019.
16. [16] D. Stephens, P. Vonk, T. Brewer, Validation of Open-source Airblast Solver (blastFoam) in an Urban Environment. presented at the MABS, Hague, Netherlands, 2018.
17. [17] P. Vonk, A New OpenFOAM Solver for Compressible Multi-Fluid Flow with Application to High-Explosive Detonation. presented at the OpenFOAM Users Conference, Cologne, Germany, 2016.
18. [18] P. Vonk, T. Brewer, A New OpenFOAM Solver for Compressible Multi-Fluid Flow with Application to High-Explosive Detonation and Extended Validation, presented at the OpenFOAM Users Conference, USA, 2016.
19. [19] مینائیان، ع. توانگر روستا، س. نورپور، ز (1400). بررسی اثر استفاده از معادله حالت گاز حقیقی بر شبیه سازی انفجار و تنظیم تجربی معادله حالت. نشریه مواد پرانرژی، شماره2 ، صص 104-93.
20. [20] W.W. Kim, S. Menon, A new dynamic one-equation subgrid-scale model for large eddy simulations. In33rd Aerospace Sciences Meeting and Exhibit, p. 356, 1995. [
DOI:10.2514/6.1995-356]
21. [21] N.V. Kozyrev, Reparametrization of the BKW equation of state for CHNO explosives which release no condensed carbon upon detonation. Central European Journal of Energetic Materials. Vol, 12, No. 4, pp. 651-669, 2015.
22. [22] C.L. Mader, Detonation properties of condensed explosives computed using the Becker-Kistiakowsky-Wilson equation of state. Los Alamos Scientific Laboratory of the University of California, 1963.
23. [23] C. Catlin, M. Ivings, M.S. Myatt, D. Ingram, D. Causon, L. Qian, Explosion Hazard Assessment: A Study of the Feasibility and Benefits of Extending Current HSE Methodology to take Account of Blast Sheltering HSL/2001/04. Health and safety laboratory, 2001.
24. [24] C.Y. Tham, Numerical simulation on the interaction of blast waves with a series of aluminum cylinders at near-field. International Journal of Impact Engineering, Vol, 36, No. 1, pp. 122-31, 2009. [
DOI:10.1016/j.ijimpeng.2007.12.011]
25. [25] A.M. Remennikov, T.A. Rose, Modelling blast loads on buildings in complex city geometries. Computers & Structures, Vol, 83, No. 27, pp. 2197-205, 2005. [
DOI:10.1016/j.compstruc.2005.04.003]
26. [26] M. Suceska, H.G. Ang, H.Y. Serene-Chan, Study of the effect of covolumes in BKW equation of state on detonation properties of CHNO explosives. Propellants, Explosives, Pyrotechnics. Vol, 38, No. 1, pp. 103-12, 2013. [
DOI:10.1002/prep.201100150]
27. [27] F. Cengiz, A. Ulas, Numerical prediction of steady-state detonation properties of condensed-phase explosives. Journal of hazardous materials, Vol, 172, No. 3, pp.1646-51, 2009. [
DOI:10.1016/j.jhazmat.2009.08.038]