Volume 22, Issue 11 (November 2022)                   Modares Mechanical Engineering 2022, 22(11): 677-686 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Samadieh Labbaf H, Hashemi S. Application of image processing to study fracture surface of API X70 steel under Charpy impact test. Modares Mechanical Engineering 2022; 22 (11) :677-686
URL: http://mme.modares.ac.ir/article-15-61576-en.html
1- University of Birjand
2- University of Birjand , shhashemi@birjand.ac.ir
Abstract:   (1421 Views)
The Charpy impact test is an experimental method for determination of materials dynamic properties at different temperatures to investigate the ductile to brittle transition behavior of tested materials. The percentages of ductile and brittle fractures can be evaluated based on fracture area of Charpy specimen (according to API E23 standard) by visual techniques which do not provide exact percentages of these fractures. In this study, a method is proposed to calculate the exact percentage of ductile fractures using image processing, which makes it possible to quantitatively examine different parts of the fracture surface with high accuracy. All steps of image processing are described for eleven Charpy standard specimens of API X70 steel, tested at temperatures between +20 to -80 °C with a temperature increment of 10 °C. In this research, converting a qualitative image of fracture surface to a quantitative matrix is described for the first time. Prediction of the shape of ductile and brittle parts of the fracture surface at temperatures between +20 and -80 °C is one of the results of this study. The percentages of ductile fractures using image processing for temperatures of +20, 0, -20, -40, -40, -60 and -80 °C were obtained as 100, 100, 86, 53, 36 and 0, respectively. The transition temperature was -45 °C for this steel, corresponding of 50% ductile fracture.
 
Full-Text [PDF 925 kb]   (800 Downloads)    
Article Type: Original Research | Subject: Damage Mechanics
Received: 2022/05/17 | Accepted: 2022/08/10 | Published: 2022/11/1

References
1. [1] B. Verlinden, Thermo-mechanical Processing of Metallic Materials, 1st Edition, Elsevier Ltd, 2007.
2. [2] Z. Zhou, Z. Tong, G. Qian, W. Zhong, C. Wang, W. Yang, and F. Berto, Irradiation effect on impact fracture behavior of A508-3 steel in ductile-to-brittle transition range, Engineering Failure Analysis, Vol. 97, pp. 836-843, 2019. [DOI:10.1016/j.engfailanal.2019.01.053]
3. [3] B. Tanguy, J. Besson, R. Piques, and A. Pineau, Ductile to brittle transition of an A508 steel characterized by Charpy impact test, Engineering Fracture Mechanics, Vol. 72, pp. 49-72, 2005. [DOI:10.1016/j.engfracmech.2004.03.010]
4. [4] S. H. Hashemi, D. Mohammadyani, M. Pouranvari and S. M. Mousavizadeh, On the relation of microstructure and impact toughness characteristics of DSAW steel of grade API X70, Fatigue & Fracture of Engineering Materials & Structures, Vol. 32, No. 1, pp. 33-40, 2009. [DOI:10.1111/j.1460-2695.2008.01312.x]
5. [5]‌‌ ‌S. Y. Shin, B. Hwang, S. Kim, S. Lee, Fracture toughness analysis in transition temperature region of API X70 pipeline steels, Materials Science and Engineering A, Vol. 429, pp. 196-204, 2006. [DOI:10.1016/j.msea.2006.05.086]
6. [6] S. Y. Shin, B. Hwang, S. Kim, S. Lee, Analysis of fracture toughness in the transition temperature region of API X70 pipeline steels rolled in two-phase region, Metallurgical and Materials Transactions A, Vol. 38A, No. 5, pp. 1012-1021, 2007. [DOI:10.1007/s11661-007-9125-6]
7. [7] S. H. Hashemi, Apportion of Charpy energy in API 5L grade X70 pipeline steel, International Journal of Pressure Vessels and Piping, Vol.85, No. 12, pp. 879-884, 2008. [DOI:10.1016/j.ijpvp.2008.04.011]
8. [8] B. Beidokhti, A.H. Koukabi, A. Dolati, Influences of titanium and manganese on high strength low alloy SAW weld metal properties, Materials Characterization, Vol. 60, pp. 225-233, 2009. [DOI:10.1016/j.matchar.2008.09.005]
9. [9] J. Capelle, J. Furtado, Z. Azari, S. Jallais, G. Pluvinage, Design based on ductile-brittle transition temperature for API 5L X65 steel used for dense co2 transport, Engineering Fracture Mechanics, Vol. 110, pp. 270-280, 2013. [DOI:10.1016/j.engfracmech.2013.08.009]
10. [10] G. Pluvinage, M. B. Amara, J. Capelle, Z. Azari, Role of constraint on ductile brittle transition temperature of pipe steel X65, Procedia Materials Science, Vol. 3, pp. 1560-1565, 2014. [DOI:10.1016/j.mspro.2014.06.252]
11. [11] E. Lucon, C. N. McCowan, R. L. Santoyo, Impact characterization of line pipe steels by means of standard, sub-size and miniaturized charpy specimens, National Institute of Standards and Technology Technical Note 1865, 2015. [DOI:10.6028/NIST.TN.1865]
12. [12]R. Maksuti, Fractographic analysis of welded joint surfaces, International scientific journal machines technologies materials, Vol. 37, No. 12, pp. 34-37, 2016.
13. [13] H. Kawata, O. Umezawa, Two step ductile to brittle transition behavior on ferrite+pearlite structure steel sheet, International Advance Publication by J-stage, Vol. 57, No. 7, pp. 1282-1288, 2017. [DOI:10.2355/isijinternational.ISIJINT-2017-026]
14. [14] S. V. Panin, P. O. Maruschak, I. V. Vlasov, D. D. Moiseenko, F. Berto, A.Vinogradov, Effect of temperature-force factors and concentrator shape on impact fracture mechanisms of 17Mn1Si steel, Advances in Materials Science and Engineering, Vol. 2017, pp. 1-12, 2017. [DOI:10.1155/2017/9867217]
15. [15] C. N. McCowan, E. Lucon, R. L. Santoyo, Fracture appearance of steels in transition: experimental observations and measurements, Journal of Testing and Evaluation, Vol. 47 ,No. 2, pp. 1009-1022, 2019. [DOI:10.1520/JTE20170448]
16. [16] T. C. Park, B. S. Kim, J. H. Son, Y. K. Yeo, A New Fracture Analysis Technique for Charpy Impact Test Using Image Processing, Korean Journal of Metals and Materials, Vol. 59, No. 1, pp. 61-66, 2021. [DOI:10.3365/KJMM.2021.59.1.61]
17. [17] API Specifications 5L, specifications for line pipe, Forty Fourth Edition, American Petroleum institute, 2007.
18. [18] ASTM E23, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, Published May 2003.
19. [19] H. Khavanin, S. H. Hashemi, Comparison of fracture area of drop weight tear test and Charpy specimen in thermomechanical steel, Journal of Mechanical Engineering Transaction of ISME, Vol. 16, No. 3, pp. 68-78, 2014. (in Persion)
20. [20] O. K. Chopra and W. J. Shack, Mechanical Properties of Thermally Aged Cast Stainless Steels from Shippingport Reactor Components, Argonne National Laboratory, 1995. [DOI:10.2172/71383]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.