1. [1] K. Gersten, "Hermann Schlichting and the boundary-layer theory," in Hermann Schlichting-100 Years: Springer, 2009, pp. 3-17. [
DOI:10.1007/978-3-540-95998-4_2]
2. [2] N. Rostamzadeh, R. Kelso, B. Dally, and K. Hansen, "The effect of undulating leading-edge modifications on NACA 0021 airfoil characteristics," Physics of fluids, vol. 25, no. 11, p. 117101, 2013. [
DOI:10.1063/1.4828703]
3. [3] A. Hedenström, L. C. Johansson, and G. R. Spedding, "Bird or bat: comparing airframe design and flight performance," Bioinspiration & Biomimetics, vol. 4, no. 1, p. 015001, 2009. [
DOI:10.1088/1748-3182/4/1/015001]
4. [4] D. M. Bushnell and K. Moore, "Drag reduction in nature," Annual review of fluid mechanics, vol. 23, no. 1, pp. 65-79, 1991. [
DOI:10.1146/annurev.fl.23.010191.000433]
5. [5] F. E. Fish and J. M. Battle, "Hydrodynamic Design of the humpback whale flipper," Journal of morphology, vol. 225, no. 1, pp. 51-60, 1995. [
DOI:10.1002/jmor.1052250105]
6. [6] P. W. Bearman and J. C. Owen, "Reduction of bluff-body drag and suppression of vortex shedding by the introduction of wavy separation lines," Journal of Fluids and Structures, vol. 12, no. 1, pp. 123-130, 1998. [
DOI:10.1006/jfls.1997.0128]
7. [7] D. S. Miklosovic, M. M. Murray, and L. E. Howle, "Experimental evaluation of sinusoidal leading edges," Journal of aircraft, vol. 44, no. 4, pp. 1404-1408, 2007. [
DOI:10.2514/1.30303]
8. [8] H. Johari, C. Henoch, D. Custodio, and A. Levshin, "Effects of leading-edge protuberances on airfoil performance," AIAA Journal, vol. 45, no. 11, pp. 2634-2642, 2007. [
DOI:10.2514/1.28497]
9. [9] H. Shan, L. Jiang, C. Liu, M. Love, and B. Maines, "Numerical study of passive and active flow separation control over a NACA0012 airfoil," Computers & fluids, vol. 37, no. 8, pp. 975-992, 2008. [
DOI:10.1016/j.compfluid.2007.10.010]
10. [10] J. Favier, A. Pinelli, and U. Piomelli, "Control of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippers," Comptes Rendus Mecanique, vol. 340, no. 1-2, pp. 107-114, 2012. [
DOI:10.1016/j.crme.2011.11.004]
11. [11] A. Skillen, A. Revell, A. Pinelli, U. Piomelli, and J. Favier, "Flow over a wing with leading-edge undulations," Aiaa Journal, vol. 53, no. 2, pp. 464-472, 2015. [
DOI:10.2514/1.J053142]
12. [12] J. Nedić and J. C. Vassilicos, "Vortex shedding and aerodynamic performance of airfoil with multiscale trailing-edge modifications," AIAA Journal, vol. 53, no. 11, pp. 3240-3250, 2015. [
DOI:10.2514/1.J053834]
13. [13] M. Berry, J. Las Fargeas, and K. B. Blair, "Wind tunnel testing of a novel wingsuit design," Procedia Engineering, vol. 2, no. 2, pp. 2735-2740, 2010. [
DOI:10.1016/j.proeng.2010.04.059]
14. [14] T. A. Sestak, "The effect of surface materials and morphology on wingsuit aerodynamics," 2017.
15. [15] N. Ansari, S. Krzywinski, and J. Fröhlich, "Towards a combined CAD and CFD development process of a wingsuit," in Multidisciplinary Digital Publishing Institute Proceedings, 2018, vol. 2, no. 6, p. 228. [
DOI:10.3390/proceedings2060228]
16. [16] M. Edwards, A. Furnell, J. Coleman, and S. Davis, "A preliminary anthropometry standard for Australian Army equipment evaluation," DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION FISHERMANS BEND (AUSTRALIA), 2014.
17. [17] I. H. Abbott and A. E. Von Doenhoff, Theory of wing sections: including a summary of airfoil data. Courier Corporation, 2012.
18. [18] M. H. Sadraey, Aircraft design: A systems engineering approach. John Wiley & Sons, 2012. [
DOI:10.1002/9781118352700]
19. [19] S. Omholt, "CFD Modeling of a Wingsuit," Institutt for energi-og prosessteknikk, 2011.
20. [20] N. Ansari, 3D Design and Simulation Methods for the Development of Wingsuits. TUDpress, 2019.
21. [21] N. Rostamzadeh Torghabeh, R. Kelso, B. Dally, and K. Hansen, "The effect of undulating leading-edge modifications on NACA 0021 airfoil characteristics," 2013. [
DOI:10.1063/1.4828703]