Volume 23, Issue 2 (February 2023)                   Modares Mechanical Engineering 2023, 23(2): 127-138 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gitifar S, Mirjalili A S, Jamali A, Pirvalizadeh S, Fakhari V. Experimental evaluation of the open-loop control method for a dual-axis solar tracker. Modares Mechanical Engineering 2023; 23 (2) :127-138
URL: http://mme.modares.ac.ir/article-15-63124-en.html
1- Shahid Beheshti University
2- Shahid Beheshti University , v_fakhari@sbu.ac.ir
Abstract:   (1483 Views)
These days, societies' need for energy increased due to the expansion of societies, industries, and technology. The production of electricity from renewable energy sources such as solar energy, which does not harm the environment and has little pollution, has attracted the attention of many researchers and engineers. This article will present a new plan for the dual polar axis solar tracker, its design and construction in laboratory dimensions, and the experimental evaluation of its performance using the open-loop control method. For this purpose, after examining the advantages and disadvantages of the previous designs, a new and different conceptual design for the tracker is proposed. Among the features of the proposed tracker, we can point out the ability to combine, install and operate quickly and easily, the self-locking feature, and the ability to rotate 360 ​​degrees around both axes. This tracker has no restrictions for use in different geographical areas, including areas near the North or South Pole and in the early and late hours of the day when the direction of the sun's radiation is strongly inclined. In the following, the detailed design of the proposed detector and the presentation of the open-loop control method will be discussed. Finally, by conducting experimental tests, the production power of the proposed detector is evaluated in comparison with a fixed solar panel. Based on the results, the electricity energy produced from the proposed solar tracker is 49% more than the fixed solar panel.
 
Full-Text [PDF 1244 kb]   (1134 Downloads)    
Article Type: Original Research | Subject: Mechatronics
Received: 2022/07/24 | Accepted: 2023/01/1 | Published: 2023/01/30

References
1. BP Statistical Revie of World Energy 2019 | 68th edition. 2019.
2. ساتبا، ون. پتانسیل تابش و نقشه تابش خورشید در ایران ۱۳۹۸ [Available from: http://www.satba.gov.ir/br/sun/potential-پتانسیل-تابش-و-نقشه-تابش-خورشید-در-ایران.
3. Alexandru C, editor Dynamic simulation of the adaptive sun tracking system used for an electric unmanned ground vehicle. IOP Conference Series: Materials Science and Engineering; 2019: IOP Publishing. [DOI:10.1088/1757-899X/568/1/012019]
4. Engin M, Engin D. Optimization controller for mechatronic sun tracking system to improve performance. Advances in Mechanical Engineering. 2013;5:146352. [DOI:10.1155/2013/146352]
5. Jadli U, Uniyal S, Uniyal I. Design of a Single-Axis Solar Tracker Using LDRs. Intelligent Communication, Control and Devices: Springer; 2018. p. 1041-9. [DOI:10.1007/978-981-10-5903-2_110]
6. Arbab H, Jazi B, Rezagholizadeh M. A computer tracking system of solar dish with two-axis degree freedoms based on picture processing of bar shadow. Renewable Energy. 2009;34(4):1114-8. [DOI:10.1016/j.renene.2008.06.017]
7. Neville RC. Solar energy collector orientation and tracking mode. Solar energy. 1978;20(1):7-11. [DOI:10.1016/0038-092X(78)90134-2]
8. Song J, Yang Y, Zhu Y, Jin Z. A high precision tracking system based on a hybrid strategy designed for concentrated sunlight transmission via fibers. Renewable energy. 2013;57:12-9. [DOI:10.1016/j.renene.2013.01.022]
9. Sungur C. Multi-axes sun-tracking system with PLC control for photovoltaic panels in Turkey. Renewable energy. 2009;34(4):1119-25. [DOI:10.1016/j.renene.2008.06.020]
10. Blanco-Muriel M, Alarcón-Padilla DC, López-Moratalla T, Lara-Coira M. Computing the solar vector. Solar energy. 2001;70(5):431-41. [DOI:10.1016/S0038-092X(00)00156-0]
11. Zhu Y, Liu J, Yang X. Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection. Applied Energy. 2020;264:114647. [DOI:10.1016/j.apenergy.2020.114647]
12. Batayneh W, Bataineh A, Soliman I, Hafees SA. Investigation of a single-axis discrete solar tracking system for reduced actuations and maximum energy collection. Automation in Construction. 2019;98:102-9. [DOI:10.1016/j.autcon.2018.11.011]
13. Abdallah S, Nijmeh S. Two axes sun tracking system with PLC control. Energy conversion and management. 2004;45(11-12):1931-9. [DOI:10.1016/j.enconman.2003.10.007]
14. Yilmaz S, Ozcalik HR, Dogmus O, Dincer F, Akgol O, Karaaslan M. Design of two axes sun tracking controller with analytically solar radiation calculations. Renewable and Sustainable Energy Reviews. 2015;43:997-1005. [DOI:10.1016/j.rser.2014.11.090]
15. Elmaged A, Kamal H. Passive solar tracking system: UOFK; 2015.
16. Fathabadi H. Novel high efficient offline sensorless dual-axis solar tracker for using in photovoltaic systems and solar concentrators. Renewable Energy. 2016;95:485-94. [DOI:10.1016/j.renene.2016.04.063]
17. Fathabadi H. Novel online sensorless Dual-Axis sun tracker. IEEE/ASME transactions on mechatronics. 2016;22(1):321-8. [DOI:10.1109/TMECH.2016.2611564]
18. Robles Algarin CA, Ospino Castro AJ, Naranjo Casas J. Dual-axis solar tracker for using in photovoltaic systems. 2017.
19. Smirnov A, Malugin S, Bakanov A, editors. Designing integrated PV facility with dual-axis solar tracking system mounted on the south building face. 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM); 2017: IEEE. [DOI:10.1109/ICIEAM.2017.8076254]
20. Frankovic D, Kirincic V, Valentic V. A dual-axis tracking photovoltaic power plant as an educational tool. International Journal of Electrical Engineering Education. 2017;54(3):189-207. [DOI:10.1177/0020720916673649]
21. Mostafa MTB, Choudhury SMTA, Hosain MS, editors. Design and Performance Analysis of a Dual Axis Solar Tracker. 2019 IEEE 1st International Conference on Energy, Systems and Information Processing (ICESIP); 2019: IEEE. [DOI:10.1109/ICESIP46348.2019.8938338]
22. Rosma IH AJ, Darmawan S, Anand B, Ali ND, Anto B. The Implementation and Analysis of Dual Axis Sun Tracker System to Increase Energy Gain of Solar Photovoltaic. IEEE/ASME transactions on mechatronics. 2018 Oct 16 [DOI:10.1109/ICon-EEI.2018.8784321]
23. Yao Y HY, Gao S, Yang G, Du J. . A multipurpose dual-axis solar tracker with two tracking strategies. Renewable Energy. 2014 Dec 1;72:88-98. [DOI:10.1016/j.renene.2014.07.002]
24. Alexandru C. A novel open-loop tracking strategy for photovoltaic systems. The Scientific World Journal. 2013;vol.2013. [DOI:10.1155/2013/205396]
25. C A. Simulation of a mechatronic dual-axis tracking system for PV panels. Trans Tech Publications Ltd. 2017;Vol. 859, pp. 81-87. [DOI:10.4028/www.scientific.net/AMM.859.81]
26. Jamroen C KP, Kohsri S, Himananto W, Panupintu S, Unkat S. A low-cost dual-axis solar tracking system based on digital logic design: Design and implementation. Sustainable Energy Technologies and Assessments. 2020 Feb 1. [DOI:10.1016/j.seta.2019.100618]
27. Vahid Fakhari AM, inventorDual axis solar tracker with Hybrid control and full rotation. Iran2020.
28. Shigley JE MC, Budnyas RG, Nisbett KJ. Shigley'S Mechanical Engineering Design (In Si Units),(Sie)2008.
29. RC J. Fundamentals of machine component design.
30. https://www.esrl.noaa.gov/gmd/grad/solcalc/calcdetails.html.
31. Sen Z. Solar energy fundamentals and modeling techniques: atmosphere, environment, climate change and renewable energy: Springer Science & Business Media; 2008.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.