Volume 23, Issue 2 (February 2023)                   Modares Mechanical Engineering 2023, 23(2): 81-91 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gholami Moghaddam S, Hashemi S. Experimental measurement of critical crack tip opening angle in API X65 steel using drop weight tear test specimen. Modares Mechanical Engineering 2023; 23 (2) :81-91
URL: http://mme.modares.ac.ir/article-15-63867-en.html
1- University of BIrjand
2- University of Birjand , shhashemi@birjand.ac.ir
Abstract:   (1272 Views)
The critical Crack Tip Opening Angle (CTOAc) is considered as a convenient parameter to characterize the crack arrest toughness of natural gas pipeline. Load-displacement curve is a comprehensive reflection of geometry, mechanical property and fracture behavior of a loaded specimen, so it would be highly advantageous to deduce (CTOAc) from load-displacement curve directly. From force-displacement curves, maximum force of 209kN and 207kN were obtained for experimental and numerical data, respectively. In this article, a combination of load-displacement and deformation of the drop weight tear test specimen was used to calculate the critical crack tip opening angle. For this purpose, the simplified single-specimen test method was used. The (CTOAc) is dependent on the slope of the steady-state crack growth region and the plastic rotation factor. Firstly, based on the fact that load decreases linearly with the increment of displacement during steady-state crack growth, the slope of the experimental load-displacement curve of API X65 steel in the steady-state crack growth region was obtained as 21.583. Secondly, by modeling the drop weight tear test in Abaqus software and using two methods of mises stress and neutral axis, the plastic rotation factor was obtained as 0.5688 and 0.5651, respectively. Finally, these
parameters were used and the critical crack tip opening angle was determined as 12.00 and 12.08 degrees.
Full-Text [PDF 1093 kb]   (842 Downloads)    
Article Type: Original Research | Subject: Impact Mechanics
Received: 2022/08/28 | Accepted: 2022/12/1 | Published: 2023/01/30

References
1. Shibanuma K, Hosoe T, Nakai H, Morita A, Aihara S. A model to evaluate unstable ductile crack arrestability of offshore pipeline. Engineering Fracture Mechanics. 2017;178:126-47. [DOI:10.1016/j.engfracmech.2017.04.011]
2. Shuai J. Study on crack growth resistance curve test of pipeline steel. J China Univ Petrol (Ed Nat Sci). 2013;5:174-80.
3. O'Donoghue PE, Green ST, Kanninen MF, Bowles PK. The development of a fluid/structure interaction model for flawed fluid containment boundaries with applications to gas transmission and distribution piping. Computers & Structures. 1991;38(5):501-13. [DOI:10.1016/0045-7949(91)90002-4]
4. Zhuang Z, O'Donoghue PE. The recent development of analysis methodology for rapid crack propagation and arrest in gas pipelines. International Journal of Fracture. 2000;101(3):269-90. https://doi.org/10.1023/A:1007676310234 [DOI:10.1023/A:1007614308834]
5. Nordhagen HO, Kragset S, Berstad T, Morin A, Dørum C, Munkejord ST. A new coupled fluid-structure modeling methodology for running ductile fracture. Computers & Structures. 2012;94-95:13-21. [DOI:10.1016/j.compstruc.2012.01.004]
6. Nordhagen HO, Munkejord ST, Hammer M, Gruben G, Fourmeau M, Dumoulin S. A fracture-propagation-control model for pipelines transporting CO2-rich mixtures including a new method for material-model calibration. Engineering Structures. 2017;143:245-60. [DOI:10.1016/j.engstruct.2017.04.015]
7. Shterenlikht A, Hashemi SH, Howard IC, Yates JR, Andrews RM. A specimen for studying the resistance to ductile crack propagation in pipes. Engineering Fracture Mechanics. 2004;71(13):1997-2013. [DOI:10.1016/j.engfracmech.2003.10.001]
8. Cao Y, Zhen Y, He Y, Zhang S, Sun Y, Yi H, et al. Prediction of limit pressure in axial through-wall cracked X80 pipeline based on critical crack-tip opening angle. J China Univ Pet(Ed Nat Sci). 2017;41:139-46.
9. Ben Amara M, Pluvinage G, Capelle J, Azari Z. New numerical tools to calibrate the Two Curves Method using the CTOA criterion. Engineering Fracture Mechanics. 2019;205:532-46. [DOI:10.1016/j.engfracmech.2017.09.028]
10. Chandra SK, Sarkar R, Bhowmick AD, De PS, Chakraborti PC, Ray SK. Crack tip opening angle (CTOA) and δ5 measurements on SENT and DENT specimens of a thin interstitial-free steel sheet. Engineering Fracture Mechanics. 2020;225:106861. [DOI:10.1016/j.engfracmech.2019.106861]
11. Xu S, Tyson WR. Errata and comments to Xu, S., Petri, N. and Tyson, W.R., "Evaluation of CTOA from load vs. load-line displacement for C(T) specimen", Eng Fract Mech 2009;76:2126-2134. Engineering Fracture Mechanics. 2019;205:603-5. [DOI:10.1016/j.engfracmech.2018.11.003]
12. Gesing MA, Simha CHM, Xu S, Tyson WR. Geometric and material property dependencies of the plastic rotation factor in the drop-weight-tear test. Engineering Fracture Mechanics. 2016;153:399-406. [DOI:10.1016/j.engfracmech.2015.12.021]
13. Shibanuma K, Hosoe T, Yamaguchi H, Tsukamoto M, Suzuki K, Aihara S. Crack tip opening angle during unstable ductile crack propagation of a high-pressure gas pipeline. Engineering Fracture Mechanics. 2018;204:434-53. [DOI:10.1016/j.engfracmech.2018.10.020]
14. Xu S, Bassindale C, Williams BW, Wang X, Tyson WR, Shibanuma K. Comments on CTOA transferability in "Crack tip opening angle during unstable ductile crack propagation of a high-pressure gas pipeline" [204 (2018) 434-453]. Engineering Fracture Mechanics. 2019;214:335-8. [DOI:10.1016/j.engfracmech.2019.03.023]
15. Lu L, Wang S. An analytical method to predict residual strength based on critical CTOA. Engineering Fracture Mechanics. 2018;200:31-41. [DOI:10.1016/j.engfracmech.2018.07.023]
16. Lu L, Wang S. Relationship between crack growth resistance curves and critical CTOA. Engineering Fracture Mechanics. 2017;173:146-56. [DOI:10.1016/j.engfracmech.2016.12.010]
17. Lu L, Wang S, Tong G. Relationship between incremental J integral and crack tip opening angle in elastic plastic materials. European Journal of Mechanics - A/Solids. 2019;75:399-409. [DOI:10.1016/j.euromechsol.2019.01.017]
18. Hashemi SH, Dastani H, Sadri J. A new data analysis technique to examine crack tip opening angle values tested in API X65 pipe steel. Fatigue & Fracture of Engineering Materials & Structures. 2013;36(7):614-22. [DOI:10.1111/ffe.12028]
19. Reuven R, McCowan C, Drexler E, Shtechman A, Darcis P, Treinen JM, et al. CTOA Results for X65 and X100 Pipeline Steels: Influence of Displacement Rate2008. [DOI:10.1115/IPC2008-64363]
20. Xu S, Tyson W, Eagleson R, McCowan C, Drexler E, McColskey J, et al. Measurement of CTOA of pipe steels using MDCB and DWITT specimens2010. [DOI:10.1115/IPC2010-31076]
21. O'Donoghue PE, Kanninen MF, Leung CP, Demofonti G, Venzi S. The development and validation of a dynamic fracture propagation model for gas transmission pipelines. International Journal of Pressure Vessels and Piping. 1997;70(1):11-25. [DOI:10.1016/S0308-0161(96)00012-9]
22. ASTM E. Standard Test Method for Determination of Resistance to Stable Crack Extension under Low-Constraint Conditions. ASTM E2472-12: American Society of Testing and Materials; 2018.
23. Newman JC, James MA, Zerbst U. A review of the CTOA/CTOD fracture criterion. Engineering Fracture Mechanics. 2003;70(3):371-85. [DOI:10.1016/S0013-7944(02)00125-X]
24. Dawicke DS, Sutton MA. CTOA and crack-tunneling measurements in thin sheet 2024-T3 aluminum alloy. Experimental Mechanics. 1994;34(4):357-68. [DOI:10.1007/BF02325151]
25. Heerens J, Schödel M. On the determination of crack tip opening angle, CTOA, using light microscopy and δ5 measurement technique. Engineering Fracture Mechanics. 2003;70(3):417-26. [DOI:10.1016/S0013-7944(02)00128-5]
26. Lloyd WR, McClintock FA. Microtopography for ductile fracture process characterization Part 2: application for CTOA analysis. Engineering Fracture Mechanics. 2003;70(3):403-15. [DOI:10.1016/S0013-7944(02)00127-3]
27. Xu S, Bouchard R, Tyson WR. Simplified single-specimen method for evaluating CTOA. Engineering Fracture Mechanics. 2007;74(15):2459-64. [DOI:10.1016/j.engfracmech.2006.11.013]
28. Martinelli A, Venzi S. Tearing modulus, J-integral, CTOA and crack profile shape obtained from the load-displacement curve only. Engineering Fracture Mechanics. 1996;53(2):263-77. [DOI:10.1016/0013-7944(95)00100-X]
29. Pussegoda LN, Verbit S, Dinovitzer A, Tyson W, Glover A, Collins L, et al., editors. Review of CTOA as a Measure of Ductile Fracture Toughness. 2000 3rd International Pipeline Conference; 2000. V001T02A021. [DOI:10.1115/IPC2000-131]
30. Fang J, Zhang J, Wang L. Evaluation of cracking behavior and critical CTOA values of pipeline steel from DWTT specimens. Engineering Fracture Mechanics. 2014;124-125:18-29. [DOI:10.1016/j.engfracmech.2014.04.031]
31. Fang J, Zhang JW, Wang L. An energy based regression method to evaluate critical CTOA of pipeline steels by instrumented drop weight tear tests. International Journal of Fracture. 2014;187(1):123-31. [DOI:10.1007/s10704-013-9922-4]
32. Shuai J, Tu S, Wang J, Ren X, He J, Zhang Z. Determining critical CTOA from energy-load curves with DWTT specimen. Engineering Fracture Mechanics. 2017;186:47-58. [DOI:10.1016/j.engfracmech.2017.09.012]
33. ASTM E. Standard Test Method for Determination of Crack-Tip-Opening Angle of Pipe Steels Using DWTT Specimens. ASTM E3039-16: American Society of Testing and Materials; 2016.
34. Fathi-Asgarabad E, Hashemi SH. Experimental Measurement and Numerical Evaluation of Fracture Energy in Drop Weight Tear Test Specimen with Chevron Notch in API X65 Steel. Modares Mechanical Engineering. 2020;20(5):1145-56.
35. Department APIP. API Recommended Practice for Conducting Drop-weight Tear Tests on Line Pipe. Washigton DC: American Petroleum Institute; 1996.
36. Fathi E, Hashemi SH. Analysis of fracture energy in drop weight tear testing of API X65 gas pipeline steel. Journal of Pipeline Science and Engineering. 2021;1(2):225-32. [DOI:10.1016/j.jpse.2021.03.001]
37. Hari Manoj Simha C, Xu S, Tyson WR. Non-local phenomenological damage-mechanics-based modeling of the Drop-Weight Tear Test. Engineering Fracture Mechanics. 2014;118:66-82. [DOI:10.1016/j.engfracmech.2014.01.009]
38. Tanguy B, Besson J, Piques R, Pineau A. Ductile to brittle transition of an A508 steel characterized by Charpy impact test: Part II: modeling of the Charpy transition curve. Engineering Fracture Mechanics. 2005;72(3):413-34. [DOI:10.1016/j.engfracmech.2004.03.011]
39. Fang J, Zhang JW, Zhou YD. Determination of dynamic rotation factor for DWTT specimens by strain analysis and hardness measurement. Fatigue & Fracture of Engineering Materials & Structures. 2016;39(7):830-8. [DOI:10.1111/ffe.12397]
40. Tyson WR, Gesing MA, Simha CHM, Xu S. Comments and replies on the paper 'Determination of dynamic rotation factor for DWTT specimens by strain analysis and hardness measurement', FFEMS, 2016, 39, 830-838, by J. Fang, J.W. Zhang, and Y.D. Zhou. Fatigue & Fracture of Engineering Materials & Structures. 2017;40(9):1501-5. [DOI:10.1111/ffe.12633]
41. Fonzo A, Salvini P, Di Biagio M. Fracture propagation in DWT back slotted specimens. International Journal of Fracture. 2004;128(1):159-69. [DOI:10.1023/B:FRAC.0000040979.74745.5b]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.